Answer: [tex]t_{11}=-2187[/tex]
Step-by-step explanation:
[tex]t_{3}=-1/3[/tex]
That is :
[tex]ar^{2} = -1/3[/tex] ................. equation 1
Also
[tex]t_{8}=81[/tex]
that is
[tex]ar^{7}=81[/tex] ................. equation 2
divide equation 2 by equation 1 , that is
[tex]\frac{ar^{7}}{ar^{2}} = 81 / -1/3[/tex]
[tex]r^{5}=[/tex] [tex]81[/tex] x [tex]-3/1[/tex]
[tex]r^{5}= -243[/tex]
find the fifth root of both sides
[tex]r = -3[/tex]
substitute [tex]r = -3[/tex] , into equation 1 to find a , that is
[tex]a(-3^{2})= -1/3[/tex]
[tex]9a = -1/3[/tex]
multiply through by 3
[tex]27a = -1[/tex]
[tex]a =- 1/27[/tex]
To find the 11th term , the formula for the 11th term is given as :
[tex]t_{11}=ar^{10}[/tex]
[tex]t_{11}= -1/27(-3^{10})[/tex]
[tex]t_{11}=-2187[/tex]