Respuesta :

Answer: [tex]t_{11}=-2187[/tex]

Step-by-step explanation:

[tex]t_{3}=-1/3[/tex]

That is :

[tex]ar^{2} = -1/3[/tex] ................. equation 1

Also

[tex]t_{8}=81[/tex]

that is

[tex]ar^{7}=81[/tex] ................. equation 2

divide equation 2 by equation 1 , that is

[tex]\frac{ar^{7}}{ar^{2}} = 81 / -1/3[/tex]

[tex]r^{5}=[/tex] [tex]81[/tex] x [tex]-3/1[/tex]

[tex]r^{5}= -243[/tex]

find the fifth root of both sides

[tex]r = -3[/tex]

substitute [tex]r = -3[/tex] , into equation 1 to find a , that is

[tex]a(-3^{2})= -1/3[/tex]

[tex]9a = -1/3[/tex]

multiply through by 3

[tex]27a = -1[/tex]

[tex]a =- 1/27[/tex]

To find the 11th term , the formula for the 11th term is given as :

[tex]t_{11}=ar^{10}[/tex]

[tex]t_{11}= -1/27(-3^{10})[/tex]

[tex]t_{11}=-2187[/tex]

ACCESS MORE