Answer:
[tex]2.81 \times 10^{-3}\ N/C[/tex]
Explanation:
B = Magnetic field = 1.12 T
Diameter = 4.5 cm
[tex]\dfrac{dB}{dt}=0.25\ T/s[/tex]
Induced electric field is given by
[tex]\int E d l=\frac{d}{d t}\left(\int B \cdot d A\right)[/tex]
[tex]E(2 \pi r)=\frac{d B}{d t}\left(\pi r^{2}\right)[/tex]
[tex]\Rightarrow E=\frac{d B}{d t}\left(\frac{r}{2}\right)[/tex]
[tex]\Rightarrow E=\frac{d B}{d t}\left(\frac{r}{2}\right)[/tex]
[tex]\Rightarrow E=(0.250)\left(\frac{4.5 \times 10^{-2}}{4}\right)[/tex]
[tex]\Rightarrow E=2.81 \times 10^{-3}\ N/C[/tex]
The magnitude of the electric field induced in the ring is [tex]2.81 \times 10^{-3}\ N/C[/tex]
If the magnetic field is viewed by someone on the south pole of magnet then the direction of current will be counterclockwise