Be sure to answer all parts. A baseball pitcher's fastballs have been clocked at about 97 mph (1 mile = 1609 m). (a) Calculate the wavelength of a 0.148−kg baseball (in nm) at this speed. × 10 nm (Enter your answer in scientific notation) (b) What is the wavelength of a hydrogen atom at the same speed? nm

Respuesta :

Answer:

a) The wavelength of the baseball is [tex]1.033\times 10^{-25} nm[/tex].

b) 9.131 nm is the wavelength of a hydrogen atom at the 43.35 m/s.

Explanation:

Velocity of the baseball = v = 97 mile/hour

1 mile = 1609 meter

1 hour = 3600 seconds

[tex]v =\frac{97\times 1609 m}{3600 s}=43.35 m/s[/tex]

Mass of baseball = m = 0.148 kg

Wavelength of the baseball: [tex]\lambda [/tex]

[tex]\lambda =\frac{h}{mv}[/tex]     De Broglie wavelength

h =Planck's constant

[tex]=\frac{6.626\times 10^{-34} Js}{0.148 kg\times 43.35 m/s}[/tex]

[tex]\lambda =1.033\times 10^{-34} m[/tex]

[tex]1 m=10^9 nm[/tex]

[tex]\lambda = 1.033\times 10^{-25} nm[/tex]

The wavelength of the baseball is [tex]1.033\times 10^{-25} nm[/tex].

b)

Mass of the hydrogen atom = [tex]m=1.674\times 10^{-27} kg[/tex]

Velocity of hydrogen atom = u = 43.35 m/s

[tex]\lambda =\frac{h}{mv}[/tex]    De Broglie wavelength

[tex]=\frac{6.626\times 10^{-34} Js}{1.674\times 10^{-27} kg\times 43.35 m/s}[/tex]

[tex]\lambda =9.131\times 10^{-9} m[/tex]

[tex]1 m=10^9 nm[/tex]

[tex]\lambda =9.131 nm[/tex]

9.131 nm is the wavelength of a hydrogen atom at the 43.35 m/s.

ACCESS MORE
EDU ACCESS