Answer:
a)Drift velocity, [tex]v_{d} = 4.63 * 10^{-5} m/s[/tex]
Electric field in the wire, E = 1.083 * 10⁴ V/m
b) [tex]\tau = 4.84 * 10^{-20} s[/tex]
Explanation:
a) Diameter of the wire, d = 1.0 mm = 0.001 m
Area of the wire, A = [tex]\frac{\pi d^{2} }{4}[/tex]
A = [tex]\frac{\pi 0.001^{2} }{4}[/tex]
A = 0.000000785 m² = 7.85 * 10^-7
Current carried by the wire, I = 0.50 A
Number density of the conduction electrons, n = 8.5 * 10²⁸ m⁻³
charge of an electron, e = 1.62 * 10⁻¹⁹C
Current, [tex]I = neAv_{d}[/tex] , where [tex]v_{d} =[/tex] Drift velocity
[tex]0.5 = 8.5 * 10^{28} * 1.62 * 10^{-19} * 7.85 * 10^{-7} v_{d} \\v_{d} = \frac{0.5}{10809.45} \\v_{d} = 4.63 * 10^{-5} m/s \\[/tex]
Resistivity, [tex]\rho = 1.7 * 10^{-2} ohm-meter\\[/tex]
Electric field, [tex]E = \rho J\\[/tex]
[tex]J = I/A = 0.5/(7.85 * 10^{-7}) \\J = 636942.68 A/m^{2}[/tex]
E = 1.7 * 10⁻² * 636942.68
E = 1.083 * 10⁴ V/m
b) If an electron moves with constant acceleration,
S = v t.............(1)
If the electron starts from rest
S = 0.5 at².........(2)
Equating (1) and (2) and making [tex]t = \tau[/tex] and v = [tex]v_{d}[/tex]
[tex]v_{d} \tau = 0.5a \tau^{2} \\\tau = \frac{v_{d} }{0.5a}[/tex]
To get the value of a
F = qE and F= ma
qE = ma
a = qE/m
Mass of an electron, m = 9.1 * 10⁻³¹kg
a = (1.602 * 10⁻¹⁹*1.083 * 10⁴)/(9.1*10⁻³¹)
a = 1.91 * 10¹⁵m/s²
[tex]\tau = v_{d} /o.5a\\\tau = \frac{4.63 * 10^{-5} }{0.5 * 1.91 * 10^{15} } \\\tau = 4.84 * 10^{-20} s[/tex]