Answer:
Therefore the profit interval is (0,2200).
Step-by-step explanation:
Given cost and revenue function are respectively,
[tex]C(x)= 0.32x^2-0.00004x^3[/tex]
and
[tex]R(x)= 0.848x^2-0.0002x^3[/tex]
where x is the number of game sold, [tex]0\leq x\leq 3300[/tex].
Therefore the profit function is
P(x)= R(x)-C(x)
[tex]=0.848x^2-0.0002x^3-(0.32x^2-0.00004x^3)[/tex]
[tex]=0.848x^2-0.0002x^3-0.32x^2+0.00004x^3[/tex]
[tex]=0.528x^2 -0.00016x^3[/tex]
To determine the profit interval where profit function increasing, we have to find the critical point of P(x). We set the first order derivative equal to 0.
Therefore,
[tex]P'(x) = 1.056 x - 0.00048 x^2 =0[/tex]
⇒x(1.056-0.00048 x) =0
[tex]\Rightarrow x = 0[/tex] or, [tex]x= \frac{1.056}{0.00048} =2200[/tex]
Now choose two point one is less than 2200 and other is greater than of 2200.
We choose x= 1000 and x= 2000
Now
[tex]P'(1000) = 1.056 \times 1000- 0.00048 (1000)^2 = 576[/tex] >0
[tex]P'(2000) = 1.056 \times 2000- 0.00048 (2000)^2 = -1152[/tex] <0
Therefore the profit interval is (0,2200).