Answer:
a) [tex]\alpha = -22.545\,\frac{rad}{s^{2}}[/tex], b) [tex]n = 30.528\,rev[/tex], c) [tex]t = 4.125\,s[/tex], d) [tex]s = 52.748\,m[/tex], e) [tex]v_{o} = 25.575\,\frac{m}{s}[/tex]
Explanation:
a) A constant deceleration means a constant linear deceleration. The angular acceleration experimented by the tires is:
[tex]\alpha = \frac{-6.2\,\frac{rad}{s^{2}} }{0.275\,m}[/tex]
[tex]\alpha = -22.545\,\frac{rad}{s^{2}}[/tex]
b) The period of time required to decelerate the car is derive from the following expression:
[tex]t = \frac{\omega - \omega_{o}}{\alpha}[/tex]
[tex]t = \frac{0\,\frac{rad}{s}- 93\,\frac{rad}{s} }{-22.545\,\frac{rad}{s^{2}} }[/tex]
[tex]t = 4.125\,s[/tex]
The angular position at given time is:
[tex]\theta = (93\,\frac{rad}{s} )\cdot (4.125\,s)+\frac{1}{2}\cdot (-22.545\,\frac{rad}{s^{2}} )\cdot (4.125\,s)^{2}[/tex]
[tex]\theta = 191.816\,rad[/tex]
The number of revolutions are:
[tex]n =\frac{\theta}{2\pi}[/tex]
[tex]n = 30.528\,rev[/tex]
c) The time needed to decelerate the car is:
[tex]t = 4.125\,s[/tex]
d) The initial speed experimented by the car is:
[tex]v_{o} = (93\,\frac{rad}{s} )\cdot (0.275\,m)[/tex]
[tex]v_{o} = 25.575\,\frac{m}{s}[/tex]
The distance done by the car during its deceleration is:
[tex]s = (25.575\,\frac{m}{s})\cdot (4.125\,s)+\frac{1}{2}\cdot (-6.2\,\frac{m}{s^{2}} )\cdot (4.125\,s)^{2}[/tex]
[tex]s = 52.748\,m[/tex]
e) The initial speed of the car is:
[tex]v_{o} = 25.575\,\frac{m}{s}[/tex]