Answer:
[tex]\frac{dl}{dt} = -1.75\,\frac{cm}{min}[/tex]
Step-by-step explanation:
The volume formula for the cube is:
[tex]V = l^{3}[/tex]
The rate of the change of the cube side is obtained by deriving the expression in terms of time:
[tex]\frac{dV}{dt} = 3\cdot l^{2}\cdot \frac{dl}{dt}[/tex]
[tex]\frac{dl}{dt}= \frac{1}{3\cdot l^{2}}\cdot \frac{dV}{dt}[/tex]
The rate of change is:
[tex]\frac{dl}{dt} = \frac{1}{3\cdot (8\,cm)^{2}}\cdot \left(-42\,\frac{cm^{3}}{min}\right)[/tex]
[tex]\frac{dl}{dt} = -1.75\,\frac{cm}{min}[/tex]