Solve the differential equation dy dx + 12x2y = 36x2. SOLUTION The given equation is linear since it has the form of this equation with P(x) = 12x2 and Q(x) = 36x2. An integration factor is I(x) = e∫12x2 dx = .

Respuesta :

Answer:

Therefore the solution of the differential equation is

[tex]ye^{4x^3} = 3e^{4x^3}+c[/tex]    [ where c is arbitrary constant]

Step-by-step explanation:

Given differential equation is

[tex]\frac{dy}{dx} +12x^2y= 36x^2[/tex]

Here [tex]P(x)= 12x^2[/tex]   and  [tex]Q(x) = 36 x^2[/tex]

The integrating factor of the differential equation is

[tex]= e^{\int P(x) dx[/tex]

[tex]=e^{\int 12x^2dx[/tex]

[tex]=e^{ \frac{12x^3}{3}}[/tex]

[tex]=e^{4x^3}[/tex]

Multiplying the integrating factor both sides of the  differential equation

[tex]e^{4x^3}\frac{dy}{dx} +12x^2ye^{4x^3}= 36x^2e^{4x^3}[/tex]

[tex]\Rightarrow e^{4x^3} dy+12x^2ye^{4x^3}dx= 36x^2e^{4x^3}dx[/tex]

Integrating both sides,

[tex]\int e^{4x^3} dy+\int12x^2ye^{4x^3}dx= \int36x^2e^{4x^3}dx[/tex]......(1)

Let

[tex]I= \int36x^2e^{4x^3}dx[/tex]

  [tex]= \int3. 12 x^2e^{4x^3}dx[/tex]

putting [tex]{4x^3}=z[/tex] , [tex]12x^2 dx=dz[/tex]

  [tex]=\int 3. e^zdz[/tex]

  [tex]=3e^z+c[/tex]     [ where c is arbitrary constant]

Putting the value of z

  [tex]=3e^{4x^3}+c[/tex]

From (1) we get

[tex]\int e^{4x^3} dy+\int12x^2ye^{4x^3}dx= \int36x^2e^{4x^3}dx[/tex]

[tex]\Rightarrow ye^{4x^3} = 3e^{4x^3}+c[/tex]

Therefore the solution of the differential equation is

[tex]ye^{4x^3} = 3e^{4x^3}+c[/tex]    [ where c is arbitrary constant]

 

 

ACCESS MORE