Respuesta :
Answer:
[tex]ΔTita = 4205.6 rad[/tex]
Explanation:
[tex]w_{i}[/tex] means initial angular velocity, which is 0 rev/min
[tex]w_{f}[/tex] means final angular velocity, which is [tex]2.513*10^{4}rev/min[/tex]
t means time t= 3.20 s
one revolution is equivalent to 2πrad so the final angular velocity is:
[tex]w_{f}[/tex] = (2π/60) *2.513*10^{4} rad/s
[tex]w_{f}[/tex]= 2628.5 rad/s
so the angular acceleration, α will be:
α = 2628.5 rad/s / 3.20 s
[tex]a = 821.40 rad/s^{2}[/tex]
so the rotational motion about a fixed axis is:
[tex]w^{2} _{f} =w^{2} _{i}[/tex] + 2αΔTita where ΔTita is the angle in radians
so now find the ΔTita the subject of the formula
ΔTita = [tex]\frac{w^{2} _{f}-w^{2} _{i} }{2a}[/tex]
[tex]ΔTita = ((2628.5)^{2} - (0 rev/min)^{2}) / 2* 821.40[/tex]
[tex]ΔTita = 4205.6 rad[/tex]
Answer:
(a) α = 822.5rad/s²
(b) θ = 4211rad
Explanation:
Given
ω = 2.513×10⁴ rev/min = 2.513×2π/60 rad/s = 2632rad/s
t = 3.20s
ωo = 0rad/s initially at rest.
α = (ω – ωo)/t = (2632 – 0)/3.20 = 822.5rad/s²
ω² = ωo² + 2α(θ – θo)
But θo = 0rad.
2632² = 0² + 2×822.5(θ – 0)
6927424 = 1645θ
θ = 6927424/1645 = 4211.2rad