Respuesta :
Answer:
The answer is + 4.8V
Explanation:
The electric potential is
V = k ∑ [tex]q_{i} / r_{i}[/tex]
We apply this expression to our case with three charges
V = k (q₁ / r₁ + q₂ / r₂ + q₃ / r₃)
The distance is
R = √((x-x₀)² + (y-y₀)²+ (z-z₀)²)
Let's find the distances
q₁ = 50 10⁻⁹ C
r₁ = √ ((8-0)² + (0-6)²)
r₁ = 10m
q₂ = -80 10⁻⁹ C
r₂ = √ ((8 + 4)²
r₂ = 12m
q₃ = 70 10⁻⁹ C
r₃ = √ ((8-0)²+ (0 + 6)²)
r₃ = 10 m
We calculate the potential
V = 8.99 10⁸ 10⁻⁹ (50/10 -80/12 +70/10)
V = 4.795 V
The answer is + 4.8V
Answer:
V = 48V
Explanation:
To get the electric potential (relative to a zero at infinity), we will need to sum the potentials due to all the point charges on the point in question.
Thus;
V = V1 + V2 + V3
Now, let's calculate the distance first.
d1 = (0,6) -> (8,0) =√[(8-0)² + (0-6)²] = √(64 + 36) = √100 = 10
d2 = (-4,0) -> (8,0) = √[(8-(-4))² + (0-0)²] ==√(12²) = 12
d3 = (0,-6) -> (8,0) = √[(8-0)² + (0-(-6))²] = √(64 + 36) = √100 = 10
Now to the potentials ;
V = kQ/r, where k is a constant with a value of 8.99 x 10^(9) N.m²/C²
From the question,
Q1 = 50nc = 50 x 10^(-9) C
Q2 = 80nc = 80 x 10^(-9)C
Q3 = 70nc = 70 x 10^(-9)C
Thus;
V1 = kQ1/d1 = (8.99 x 10^(9) x 50 x 10^(-9))/ 10m = 44.9V
V2 = kQ2/d2 = (8.99 x 10^(9) x 80 x 10^(-9))/ 12m = -59.9V
V3 = kQ3/d3 = (8.99 x 10^(9) x 70 x 10^(-9))/ 10m = 62.9V
Hence ;
V = V1 + V2 + V3
V = 44.9 - 59.9 + 62.9 = 48V