Respuesta :

Answer:6.82 m/s

Explanation:

Given

Height of hill [tex]h=4.75\ m[/tex]

Suppose r is the radius of hoop and m be its mass

So moment  of inertia is given by

[tex]I=mr^2[/tex]

Using conservation of energy we get

Potential energy at top=Kinetic+Rotational energy at bottom

[tex]mgh=\frac{1}{2}mv^2+\frac{1}{2}I\omega ^2[/tex]

where [tex]\omega =\frac{v}{r}[/tex]

v=velocity of hoop

[tex]2gh=v^2+r^2\times \frac{v^2}{r^2}[/tex]   (without slipping)

[tex]v^2=gh[/tex]

[tex]v=\sqrt{gh}[/tex]

[tex]v=\sqrt{98\times 4.75}[/tex]

[tex]v=6.822\ m/s[/tex]

The final speed of the hoop, in meters per second is 9.67 m/s

Speed and distance based problem:

What information do we have?

Height of hill = 4.75

Using Third equation of motion

v² = u² + 2gs

Where,

v = final speed

u = initial speed

g = gravitational force

s = Disatnce

v² = (0)² + 2(9.8)(4.75)

v² = 0 + 2(9.8)(4.75)

v² = 93.5

final speed = 9.67 m/s

Find out more infomrmation about 'Final speed'.

https://brainly.com/question/5052912?referrer=searchResults

ACCESS MORE