Respuesta :
Answer:6.82 m/s
Explanation:
Given
Height of hill [tex]h=4.75\ m[/tex]
Suppose r is the radius of hoop and m be its mass
So moment of inertia is given by
[tex]I=mr^2[/tex]
Using conservation of energy we get
Potential energy at top=Kinetic+Rotational energy at bottom
[tex]mgh=\frac{1}{2}mv^2+\frac{1}{2}I\omega ^2[/tex]
where [tex]\omega =\frac{v}{r}[/tex]
v=velocity of hoop
[tex]2gh=v^2+r^2\times \frac{v^2}{r^2}[/tex] (without slipping)
[tex]v^2=gh[/tex]
[tex]v=\sqrt{gh}[/tex]
[tex]v=\sqrt{98\times 4.75}[/tex]
[tex]v=6.822\ m/s[/tex]
The final speed of the hoop, in meters per second is 9.67 m/s
Speed and distance based problem:
What information do we have?
Height of hill = 4.75
Using Third equation of motion
v² = u² + 2gs
Where,
v = final speed
u = initial speed
g = gravitational force
s = Disatnce
v² = (0)² + 2(9.8)(4.75)
v² = 0 + 2(9.8)(4.75)
v² = 93.5
final speed = 9.67 m/s
Find out more infomrmation about 'Final speed'.
https://brainly.com/question/5052912?referrer=searchResults