Good morning ☕️
Answer:
Step-by-step explanation:
Consider the sum S = i¹ + i² + i³ +. . .+ i⁹⁹ + i¹⁰⁰
S = i¹ + i² + i³ + . . . + i⁹⁹ + i¹⁰⁰
S = a₁ + a₂ + a₃ +. . . + a₉₉ + a₁₀₀
then, S is the sum of 100 consecutive terms of a geometric sequence (an)
where the first term a1 = i¹ = i and the common ratio = i
FORMULA:______________________
[tex]S=(term1)*\frac{1-(common.ratio)^{number.of.terms}}{1-(common.ratio)}[/tex]
_______________________________
then
[tex]S=i*\frac{1-i^{100} }{1-i}[/tex]
or i¹⁰⁰ = (i⁴)²⁵ = 1²⁵ = 1 (we know that i⁴ = 1)
Hence
S = 0