Respuesta :
Answer:
Part 1) [tex]P=A/(1+\frac{r}{n})^{nt}[/tex] (see the explanation)
Part 2) [tex]r=n[\frac{A}{P}^{1/(nt)}-1][/tex] (see the explanation)
Part 3) [tex]t=log(\frac{A}{P})/[(n)log(1+\frac{r}{n})][/tex] (see the explanation)
Step-by-step explanation:
we know that
The compound interest formula is equal to
[tex]A=P(1+\frac{r}{n})^{nt}[/tex]
where
A is the Final Investment Value
P is the Principal amount of money to be invested
r is the rate of interest in decimal
t is Number of Time Periods
n is the number of times interest is compounded per year
Part 1) Find the Principal P
The values of A,r,n and t are given
Isolate the variable P
[tex]A=P(1+\frac{r}{n})^{nt}[/tex]
Divide both side by [tex](1+\frac{r}{n})^{nt}[/tex]
[tex]P=A/(1+\frac{r}{n})^{nt}[/tex]
Part 2) Find the rate r
The values of A,P,n and t are given
Isolate the variable r
[tex]A=P(1+\frac{r}{n})^{nt}[/tex]
Divide both sides by P
[tex]\frac{A}{P} =(1+\frac{r}{n})^{nt}[/tex]
Elevated both sides to 1/(nt)
[tex]\frac{A}{P}^{1/(nt)} =(1+\frac{r}{n})[/tex]
subtract 1 both sides
[tex]\frac{A}{P}^{1/(nt)}-1 =\frac{r}{n}[/tex]
Multiply by n both sides
[tex]r=n[\frac{A}{P}^{1/(nt)}-1][/tex]
Part 3) Find the time t
The values of A,P,r and n are given
Isolate the variable t
[tex]A=P(1+\frac{r}{n})^{nt}[/tex]
Divide both sides by P
[tex]\frac{A}{P} =(1+\frac{r}{n})^{nt}[/tex]
Apply log both sides
[tex]log(\frac{A}{P})=log(1+\frac{r}{n})^{nt}[/tex]
Apply property of exponents
[tex]log(\frac{A}{P})=(nt)log(1+\frac{r}{n})[/tex]
Divide both side by [tex](n)log(1+\frac{r}{n})[/tex]
[tex]t=log(\frac{A}{P})/[(n)log(1+\frac{r}{n})][/tex]