Respuesta :

Answer:

Part 1) [tex]P=A/(1+\frac{r}{n})^{nt}[/tex]   (see the explanation)

Part 2) [tex]r=n[\frac{A}{P}^{1/(nt)}-1][/tex]    (see the explanation)

Part 3) [tex]t=log(\frac{A}{P})/[(n)log(1+\frac{r}{n})][/tex]   (see the explanation)

Step-by-step explanation:

we know that

The compound interest formula is equal to  

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]  

where  

A is the Final Investment Value  

P is the Principal amount of money to be invested  

r is the rate of interest  in decimal

t is Number of Time Periods  

n is the number of times interest is compounded per year

Part 1) Find the Principal P

The values of A,r,n and t are given

Isolate the variable P

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]  

Divide both side by  [tex](1+\frac{r}{n})^{nt}[/tex]  

[tex]P=A/(1+\frac{r}{n})^{nt}[/tex]  

Part 2) Find the rate r

The values of A,P,n and t are given

Isolate the variable r

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]  

Divide both sides by P

[tex]\frac{A}{P} =(1+\frac{r}{n})^{nt}[/tex]  

Elevated both sides to 1/(nt)

[tex]\frac{A}{P}^{1/(nt)} =(1+\frac{r}{n})[/tex]  

subtract 1 both sides

[tex]\frac{A}{P}^{1/(nt)}-1 =\frac{r}{n}[/tex]  

Multiply by n both sides

[tex]r=n[\frac{A}{P}^{1/(nt)}-1][/tex]  

Part 3) Find the time t

The values of A,P,r and n are given

Isolate the variable t

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]  

Divide both sides by P

[tex]\frac{A}{P} =(1+\frac{r}{n})^{nt}[/tex]  

Apply log both sides

[tex]log(\frac{A}{P})=log(1+\frac{r}{n})^{nt}[/tex]  

Apply property of exponents

[tex]log(\frac{A}{P})=(nt)log(1+\frac{r}{n})[/tex]  

Divide both side by [tex](n)log(1+\frac{r}{n})[/tex]  

[tex]t=log(\frac{A}{P})/[(n)log(1+\frac{r}{n})][/tex]  

ACCESS MORE