[tex]Tan(x-\frac{\pi }{4}) = \frac{-17}{31}[/tex]
Step-by-step explanation:
Here we have , sin x=7/25( given sin x = 725 which is not possible ) , [tex]0<x<\frac{\pi }{2}[/tex] . Let's find tan (x - pi/4):
⇒ [tex]Tanx = \frac{sinx}{cosx}[/tex]
⇒ [tex]Tanx = \frac{sinx}{\sqrt{1-(sinx)^{2}}}[/tex]
⇒ [tex]Tanx = \frac{\frac{7}{25}}{\sqrt{1-(\frac{7}{25})^{2}}}[/tex]
⇒ [tex]Tanx = {\frac{7}{25}}{\sqrt{(\frac{625}{625-49})^{}}}[/tex]
⇒ [tex]Tanx = {\frac{7}{25}}(\frac{25}{24} )[/tex]
⇒ [tex]Tanx = {\frac{7}{24}}[/tex]
Now , [tex]Tan(x-\frac{\pi }{4}) = \frac{Tanx - Tan(\frac{\pi }{4} )}{1+ Tanx(Tan(\frac{\pi }{4} )}[/tex]
⇒ [tex]Tan(x-\frac{\pi }{4}) = \frac{Tanx -1}{1+ Tanx(1)}[/tex]
⇒ [tex]Tan(x-\frac{\pi }{4}) = \frac{\frac{7}{24} -1}{1+\frac{7}{24} }[/tex]
⇒ [tex]Tan(x-\frac{\pi }{4}) = \frac{\frac{7-24}{24} }{\frac{7+24}{24} }[/tex]
⇒ [tex]Tan(x-\frac{\pi }{4}) = \frac{-17}{24} (\frac{24}{31} )[/tex]
⇒ [tex]Tan(x-\frac{\pi }{4}) = \frac{-17}{31}[/tex]