Respuesta :
Answer:
[tex]\angle RST=20^{\circ}[/tex]
[tex]\angle RST=\frac{\pi}{9}[/tex]
Step-by-step explanation:
Please consider the attached graph of circle.
We have been given that circle H has a radius of 3 centimeters. The length of minor arc RT is [tex]\frac{2}{3}\pi[/tex]. We are asked to find the measure of angle RST.
We will use arc length formula to find central angle.
[tex]\text{Arc length}=r\cdot \theta[/tex], where theta is central angle in radians.
Upon substituting our given values in arc length formula, we will get:
[tex]r\cdot \theta=\frac{2}{3}\pi[/tex]
[tex]3\cdot \theta=\frac{2}{3}\pi[/tex]
[tex]\frac{3\cdot \theta}{3}=\frac{\frac{2\pi}{3}}{3}[/tex]
[tex]\theta=\frac{2\pi}{3\cdot 3}[/tex]
[tex]\theta=\frac{2\pi}{9}[/tex]
We know that the measure of inscribed angle is half the measure of central angle.
[tex]\angle RST=\frac{1}{2}\angle RHT[/tex]
[tex]\angle RST=\frac{1}{2}\cdot \frac{2\pi}{9}[/tex]
[tex]\angle RST=\frac{\pi}{9}[/tex]
The measure of angle RST is in radians, we will convert it in degrees as:
[tex]\angle RST=\frac{\pi}{9}\times \frac{180^{\circ}}{\pi}[/tex]
[tex]\angle RST=20^{\circ}[/tex]
Therefore, measure of angle is [tex]\frac{\pi}{9}[/tex] in radians or 20 degrees.

Answer:
20 degrees
Step-by-step explanation:
s = 2πr x
n°
360°
n° =
360s
2πr
=
360(
2π
3
)
2π(3)
= 40
thus, ∠H = 40°
then,
∠RST =
1
2
∠H =
1
2
40 = 20