Respuesta :

Answer:

[tex]\angle RST=20^{\circ}[/tex]

[tex]\angle RST=\frac{\pi}{9}[/tex]

Step-by-step explanation:

Please consider the attached graph of circle.

We have been given that circle H has a radius of 3 centimeters. The length of minor arc RT is [tex]\frac{2}{3}\pi[/tex]. We are asked to find the measure of angle RST.

We will use arc length formula to find central angle.

[tex]\text{Arc length}=r\cdot \theta[/tex], where theta is central angle in radians.

Upon substituting our given values in arc length formula, we will get:

[tex]r\cdot \theta=\frac{2}{3}\pi[/tex]

[tex]3\cdot \theta=\frac{2}{3}\pi[/tex]

[tex]\frac{3\cdot \theta}{3}=\frac{\frac{2\pi}{3}}{3}[/tex]

[tex]\theta=\frac{2\pi}{3\cdot 3}[/tex]

[tex]\theta=\frac{2\pi}{9}[/tex]

We know that the measure of inscribed angle is half the measure of central angle.

[tex]\angle RST=\frac{1}{2}\angle RHT[/tex]

[tex]\angle RST=\frac{1}{2}\cdot \frac{2\pi}{9}[/tex]

[tex]\angle RST=\frac{\pi}{9}[/tex]

The measure of angle RST is in radians, we will convert it in degrees as:

[tex]\angle RST=\frac{\pi}{9}\times \frac{180^{\circ}}{\pi}[/tex]

[tex]\angle RST=20^{\circ}[/tex]

Therefore, measure of angle is [tex]\frac{\pi}{9}[/tex] in radians or 20 degrees.

Ver imagen ApusApus

Answer:

20 degrees

Step-by-step explanation:

s = 2πr x  

360°

n° =  

360s

2πr

=  

360(

3

)

2π(3)

= 40

thus, ∠H = 40°

then,

∠RST =  

1

2

∠H =  

1

2

40 = 20

ACCESS MORE