Answer:
2√P = t + 20
Step-by-step explanation:
Rate of change of a rabbit population ∝ √P
[tex]\frac{dP}{dt}=k\sqrt{P}[/tex]
[tex]k=\frac{1}{\sqrt{P}}.\frac{dP}{dt}[/tex] -----(1)
At time 't' = 0 the population of the rabbits (P) = 100 and [tex]\frac{dP}{dt}=10[/tex] rabbits per month.
We plug in the values in the equation (1),
[tex]k=\frac{1}{\sqrt{100}}\times 10[/tex]
k = 1
Equation (1) becomes, [tex]\frac{dP}{dt}=1\times \sqrt{P}[/tex]
[tex]\frac{dP}{\sqrt{P}}=dt[/tex]
By the integration of this equation,
[tex]\int \frac{dP}{\sqrt{P}}=\int dt[/tex]
[tex]\frac{\sqrt{P}}{\frac{1}{2}}=t+C[/tex]
[tex]2\sqrt{P}=t+C[/tex]
Again for t = 0 and P = 100,
[tex]2\sqrt{100}=0+C[/tex]
C = 20
Now the integrated equation will be,
[tex]2\sqrt{P}=t+20[/tex]
Therefore, formula representing population P after time t is,
2√P = t + 20