Respuesta :

Answer:

The Proof for [tex]5^{7}+5^{6}\ is\ divisible\ by\ 6[/tex] is below.

Step-by-step explanation:

To Prove:

[tex]5^{7}+5^{6}\ is\ divisible\ by\ 6[/tex]

Proof:

We know law of indices

[tex]a^{m}.a^{n}=a^{m+n}[/tex]

Therefore,

Step 1: Applying law of indices

[tex]\dfrac{5^{7}+5^{6}}{6}=\dfrac{5^{6}.5^{1}+5^{6}}{6}[/tex]

Step 2: Taking common [tex]5^{6}[/tex] we get

[tex]\dfrac{5^{7}+5^{6}}{6}=5^{6}\times (\dfrac{5^{1}+1}{6})[/tex]

Step 3: [tex]5^{1} = 5[/tex] so add 5 + 1 we get

[tex]\dfrac{5^{7}+5^{6}}{6}=5^{6}\times \dfrac{6}{6}[/tex]

Step 4: Cancel 6 from both denominator and numerator we get

[tex]\dfrac{5^{7}+5^{6}}{6}=5^{6}\times 1=5^{6}[/tex] ...That is Divisible by 6 Proved

RELAXING NOICE
Relax