Answer:
The Proof for [tex]5^{7}+5^{6}\ is\ divisible\ by\ 6[/tex] is below.
Step-by-step explanation:
To Prove:
[tex]5^{7}+5^{6}\ is\ divisible\ by\ 6[/tex]
Proof:
We know law of indices
[tex]a^{m}.a^{n}=a^{m+n}[/tex]
Therefore,
Step 1: Applying law of indices
[tex]\dfrac{5^{7}+5^{6}}{6}=\dfrac{5^{6}.5^{1}+5^{6}}{6}[/tex]
Step 2: Taking common [tex]5^{6}[/tex] we get
[tex]\dfrac{5^{7}+5^{6}}{6}=5^{6}\times (\dfrac{5^{1}+1}{6})[/tex]
Step 3: [tex]5^{1} = 5[/tex] so add 5 + 1 we get
[tex]\dfrac{5^{7}+5^{6}}{6}=5^{6}\times \dfrac{6}{6}[/tex]
Step 4: Cancel 6 from both denominator and numerator we get
[tex]\dfrac{5^{7}+5^{6}}{6}=5^{6}\times 1=5^{6}[/tex] ...That is Divisible by 6 Proved