Answer:
[tex]2.64\times 10^{20}[/tex] photons are emitted per second.
Explanation:
Let the number of photons emitted by bulb be 'n'.
Given:
Energy radiated by bulb per second (E) = 100 J
Wavelength of light emitted (λ) = 525 nm = [tex]525\times 10^{-9}\ m[/tex]
We know that,
Energy of a photon is given as:
[tex]E_0=\frac{hc}{\lambda}[/tex]
Where,
[tex]h\to Planck's\ constant=6.626\times 10^{-34}\ Js\\\\c\to Speed\ of \ light=3\times 10^{8}\ m/s[/tex]
Now, if there are 'n' photons, the energy will be equal to energy of 1 photon times the number of photons. So,
[tex]E=nE_0\\\\E=\frac{nhc}{\lambda}[/tex]
Now, rewriting in terms of 'n', we get:
[tex]n=\frac{E\lambda}{hc}[/tex]
Plug in the values given and solve for 'n'. This gives,
[tex]n=\frac{100\times 525\times 10^{-9}}{6.626\times 10^{-34}\times 3\times 10^{8}}\\\\n=2.64\times 10^{20}[/tex]
Therefore, [tex]2.64\times 10^{20}[/tex] photons are emitted per second.