Answer:
50 minutes
Step-by-step explanation:
we know that
The speed is equal to divide the distance by the time
Let
s ----> the speed in miles per hour
d ---> the distance in miles
t ---> the time in hours
so
[tex]s=\frac{d}{t}[/tex]
step 1
Upstream
Find the time
we know that
The speed upstream is equal to the average speed still water minus the average speed of the river
so
[tex]s=5-1=4\ mph[/tex]
[tex]d=2\ mi[/tex]
substitute
[tex]4=\frac{2}{t_1}[/tex]
solve for t_1
[tex]t_1=\frac{2}{4}\ h[/tex]
simplify
[tex]t_1=\frac{1}{2}\ h[/tex]
step 2
Downstream
Find the time
we know that
The speed downstream is equal to the average speed still water plus the average speed of the river
so
[tex]s=5+1=6\ mph[/tex]
[tex]d=2\ mi[/tex]
substitute
[tex]6=\frac{2}{t_2}[/tex]
solve for t_2
[tex]t_2=\frac{2}{6}\ h[/tex]
simplify
[tex]t_2=\frac{1}{3}\ h[/tex]
step 3
Find the total time
Adds t_1 and t_2
[tex]t=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\ h[/tex]
Convert to minutes
Multiply by 60
[tex]t=\frac{5}{6}(60)=50\ minutes[/tex]