A certain gas has a molecular weight of 30.0, a critical temperature of 310 K, and a critical pressure of 4.5 MPa. Calculate the density in kg / m 3 kg/m3 of this gas at 465 K and 9.0 MPa (a) if the gas is ideal and (b) if the gas obeys the law of corresponding states

Respuesta :

Explanation:

(a)  We know that,

           [tex]P (kg/m^{3}) = \frac{m (kg)}{V (m^{3})}[/tex]

or,           P = [tex]\frac{(M.W)P}{RT}[/tex]

                  = [tex]\frac{30 kg/mol}{465 K} \times \frac{9.0}{0.0826 m^{3}atm/mol K} \times \frac{10 atm}{1.013 kPa}[/tex]

                  = 69.8 [tex]kg/m^{3}[/tex]  

Hence, if the gas is ideal then its density is 69.8 [tex]kg/m^{3}[/tex].

(b)   It is known that,

           [tex]T_{r} = \frac{T}{T_{c}}[/tex]

                       = [tex]\frac{465}{310}[/tex]

                       = 1.5

          [tex]P_{r} = \frac{P}{P_{c}}[/tex]

                     = [tex]\frac{9}{4.5}[/tex]

                     = 2

Expression for the compressibility factor is as follows.

             Z = [tex]\frac{PV}{RT}[/tex]

                 = 0.84

  and,       P = [tex]\frac{(M.W)P}{RTZ}[/tex]

                    = [tex]\frac{69.8}{0.84}[/tex]

                    = 83.095 [tex]kg/m^{3}[/tex]

Therefore, if the gas obeys the law of corresponding states then its density is 83.095 [tex]kg/m^{3}[/tex].

The density of the gas at 465 K and 9.0 MPa pressure has been 69.376 kg/[tex]\rm \bold{m^3}[/tex]. The density of gas following the law of corresponding states is 82.590 kg/[tex]\rm \bold{m^3}[/tex].

Density can be defined as mass per unit volume. Density can be given by:

Density = [tex]\rm \dfrac{mass}{volume}[/tex]

The moles can be calculated by dividing mass by molecular mass.

Moles = [tex]\rm \dfrac{mass}{molecular\;mass}[/tex]

Mass = Moles [tex]\times[/tex] Molecular mass

Putting the equation for mass in density:

Density = [tex]\rm \dfrac{Moles\;\times\;Molecular\;mass}{volume}[/tex]

[tex]\rm \dfrac{Density}{Molecular\;mass}[/tex] = [tex]\rm \dfrac{Moles}{Volume}[/tex] ......(i)

(a) The gas has been assumed to be an ideal gas. According to the ideal gas equation:

Pressure [tex]\times[/tex] Volume = moles

Pressure = [tex]\rm \dfrac{Moles}{Volume}[/tex] [tex]\times[/tex] Rydberg constant

Putting the values of Moles by Volume from equation (i)

Pressure = [tex]\rm \dfrac{Density}{Molecular\;mass}[/tex] [tex]\times[/tex] Rydberg constant

Density = [tex]\rm \dfrac{Pressure\;\times\;Molecular\;mass}{Rydberg\;Constant\;\times\;Temperature}[/tex]

Given:

Pressure = 9.0 MPa = 9.0 [tex]\times[/tex] 9.869 atm = 88.8231 atm

Molecular mass = 30 kg

Rydberg constant = 0.0826 [tex]\rm m^3\;atm/mol\;K[/tex]

Temperature = 465 K

Density = [tex]\rm \dfrac{88.8231\;\times\;30}{0.0826\;\times\;465}[/tex]

Density = 69.376 kg/[tex]\rm m^3[/tex]

The density of the gas at 465 K and 9.0 MPa pressure has been 69.376 kg/[tex]\rm \bold{m^3}[/tex].

(b) The critical temperature of gas = 310 K

The given temperature = 465 K.

The corresponding temperature = [tex]\rm\dfrac{Temperature}{Critical\;temperature}[/tex]

The corresponding temperature = [tex]\rm \dfrac{465}{310}[/tex]

The corresponding temperature = 1.5 K

The critical pressure = 4.5 MPa

The given pressure = 9.0 MPa

The corresponding pressure = [tex]\rm \dfrac{Pressure}{Critical\;pressure}[/tex]

The corresponding pressure = [tex]\rm \dfrac{9.0}{4.5}[/tex]

The corresponding pressure = 2 MPa

When the gas follows the corresponding states law:

Z = [tex]\rm \dfrac{Pressure}{Density\;\times\;Rydberg\;constant\;\times\;Temperature}[/tex]

The density of the gas following the corresponding states law has been:

Density =  [tex]\rm \dfrac{Density\;of\;Ideal\;gas}{Compresibility\;factor}[/tex]

Z = 0.84

Density = 69.376 kg/[tex]\rm \bold{m^3}[/tex].

The density of gas following the law of corresponding states = [tex]\rm \dfrac{69.376}{0.84}[/tex]

The density of gas following the law of corresponding states = 82.590 kg/[tex]\rm \bold{m^3}[/tex].

For more information about corresponding state law, refer to the link:

https://brainly.com/question/929044

ACCESS MORE