Respuesta :
Explanation:
(a) We know that,
[tex]P (kg/m^{3}) = \frac{m (kg)}{V (m^{3})}[/tex]
or, P = [tex]\frac{(M.W)P}{RT}[/tex]
= [tex]\frac{30 kg/mol}{465 K} \times \frac{9.0}{0.0826 m^{3}atm/mol K} \times \frac{10 atm}{1.013 kPa}[/tex]
= 69.8 [tex]kg/m^{3}[/tex]
Hence, if the gas is ideal then its density is 69.8 [tex]kg/m^{3}[/tex].
(b) It is known that,
[tex]T_{r} = \frac{T}{T_{c}}[/tex]
= [tex]\frac{465}{310}[/tex]
= 1.5
[tex]P_{r} = \frac{P}{P_{c}}[/tex]
= [tex]\frac{9}{4.5}[/tex]
= 2
Expression for the compressibility factor is as follows.
Z = [tex]\frac{PV}{RT}[/tex]
= 0.84
and, P = [tex]\frac{(M.W)P}{RTZ}[/tex]
= [tex]\frac{69.8}{0.84}[/tex]
= 83.095 [tex]kg/m^{3}[/tex]
Therefore, if the gas obeys the law of corresponding states then its density is 83.095 [tex]kg/m^{3}[/tex].
The density of the gas at 465 K and 9.0 MPa pressure has been 69.376 kg/[tex]\rm \bold{m^3}[/tex]. The density of gas following the law of corresponding states is 82.590 kg/[tex]\rm \bold{m^3}[/tex].
Density can be defined as mass per unit volume. Density can be given by:
Density = [tex]\rm \dfrac{mass}{volume}[/tex]
The moles can be calculated by dividing mass by molecular mass.
Moles = [tex]\rm \dfrac{mass}{molecular\;mass}[/tex]
Mass = Moles [tex]\times[/tex] Molecular mass
Putting the equation for mass in density:
Density = [tex]\rm \dfrac{Moles\;\times\;Molecular\;mass}{volume}[/tex]
[tex]\rm \dfrac{Density}{Molecular\;mass}[/tex] = [tex]\rm \dfrac{Moles}{Volume}[/tex] ......(i)
(a) The gas has been assumed to be an ideal gas. According to the ideal gas equation:
Pressure [tex]\times[/tex] Volume = moles
Pressure = [tex]\rm \dfrac{Moles}{Volume}[/tex] [tex]\times[/tex] Rydberg constant
Putting the values of Moles by Volume from equation (i)
Pressure = [tex]\rm \dfrac{Density}{Molecular\;mass}[/tex] [tex]\times[/tex] Rydberg constant
Density = [tex]\rm \dfrac{Pressure\;\times\;Molecular\;mass}{Rydberg\;Constant\;\times\;Temperature}[/tex]
Given:
Pressure = 9.0 MPa = 9.0 [tex]\times[/tex] 9.869 atm = 88.8231 atm
Molecular mass = 30 kg
Rydberg constant = 0.0826 [tex]\rm m^3\;atm/mol\;K[/tex]
Temperature = 465 K
Density = [tex]\rm \dfrac{88.8231\;\times\;30}{0.0826\;\times\;465}[/tex]
Density = 69.376 kg/[tex]\rm m^3[/tex]
The density of the gas at 465 K and 9.0 MPa pressure has been 69.376 kg/[tex]\rm \bold{m^3}[/tex].
(b) The critical temperature of gas = 310 K
The given temperature = 465 K.
The corresponding temperature = [tex]\rm\dfrac{Temperature}{Critical\;temperature}[/tex]
The corresponding temperature = [tex]\rm \dfrac{465}{310}[/tex]
The corresponding temperature = 1.5 K
The critical pressure = 4.5 MPa
The given pressure = 9.0 MPa
The corresponding pressure = [tex]\rm \dfrac{Pressure}{Critical\;pressure}[/tex]
The corresponding pressure = [tex]\rm \dfrac{9.0}{4.5}[/tex]
The corresponding pressure = 2 MPa
When the gas follows the corresponding states law:
Z = [tex]\rm \dfrac{Pressure}{Density\;\times\;Rydberg\;constant\;\times\;Temperature}[/tex]
The density of the gas following the corresponding states law has been:
Density = [tex]\rm \dfrac{Density\;of\;Ideal\;gas}{Compresibility\;factor}[/tex]
Z = 0.84
Density = 69.376 kg/[tex]\rm \bold{m^3}[/tex].
The density of gas following the law of corresponding states = [tex]\rm \dfrac{69.376}{0.84}[/tex]
The density of gas following the law of corresponding states = 82.590 kg/[tex]\rm \bold{m^3}[/tex].
For more information about corresponding state law, refer to the link:
https://brainly.com/question/929044