XZW ~ XYV, find the perimeter of XZW.

Answer:
176.4
Step-by-step explanation:
We want perimeter of large triangle, so sum of all 3 sides:
XZ, ZW, and WX
Similar triangles have corresponding proportional sides. Thus looking at the 2 similar triangles, we can write:
[tex]\frac{40}{28}=\frac{32+40}{28+YZ}[/tex]
Now, we solve for YZ:
[tex]\frac{40}{28}=\frac{32+40}{28+YZ}\\\frac{40}{28}=\frac{72}{28+YZ}\\\frac{10}{7}=\frac{72}{28+YZ}\\10(28+YZ)=72*7\\280+10YZ=504\\10YZ=224\\YZ=22.4[/tex]
Now, XZ is 28 + 22.4 = 50.4
We can use same ratio to find ZW:
[tex]\frac{40}{30}=\frac{72}{ZW}\\40ZW=30*72\\40ZW=2160\\ZW=54[/tex]
So the perimeter:
XZ + ZW + WX
50.4 + 54 + 72 = 176.4
The perimeter of a triangle is simply the sum of its three sides.
The perimeter of XZW is 176.4 unit.
Given: ΔXZW ∼ ΔXTV
ΔXZW ∼ ΔXTV
So, all corresponding sides have the same ratio.
We can use same ratio to find ZW:
[tex]\frac{40}{40+32} =\frac{30}{ZW}[/tex]
[tex]\frac{40}{72} =\frac{30}{ZW} \\40ZW=72(30)\\ZW=\frac{2160}{40} \\ZW=54[/tex]
Now, we solve for YZ:
[tex]\frac{30}{54} =\frac{28}{28+YZ} \\30(28+YZ)=28(54)\\28+YZ=\frac{1512}{30} \\YZ=50.4-28\\YZ=22.4[/tex]
So, [tex]XZ=XY+YZ=28+22.4=50.4[/tex]
The perimeter of XZW
= XZ + ZW + WZ
= 50.4 + 54 + 72
= 176.4 unit.
Therefore, The perimeter of XZW is 176.4 unit.
For more information:
https://brainly.com/question/21531254