Respuesta :
Answer:a
Explanation:
Given
First stone is thrown [tex]15^{\circ}[/tex] above the horizontal with some speed let say u
Second stone is thrown at [tex]15^{\circ}[/tex] below the horizontal with speed u
For a height h of building
For first stone (motion in vertical direction)
using
[tex]v^2-u^2=2ah [/tex]
where v=final velocity
u=initial velocity
a=acceleration
h=displacement
[tex]h=u\sin 15(t_1)-\frac{1}{2}gt_1^2---1[/tex]
For second stone
[tex]h=(-u\sin 15)(t_2)-\frac{1}{2}gt_2^2----2[/tex]
Equating 1 and 2
[tex]u\sin 15(t_1+t_2)-\frac{1}{2}g(t_1-t_2)(t_1+t_2)=0[/tex]
[tex](t_1+t_2)[u\sin 15-4.9(t_1-t_2)]=0[/tex]
as [tex]t_1+t_2[/tex] cannot be zero
so [tex]t_1-t_2=1.05\ s[/tex]
[tex]t_1=t_2+1.056[/tex]
therefore time taken by first stone(thrown upward) will be more.
Answer:
a. The stone thrown upward spends more time in the air.
Explanation:
Given:
projection of first stone, [tex]\theta_1=15^{\circ}[/tex] above the horizontal
initial velocity of projectiles, [tex]u_1=u_2=20\ m.s^{-1}[/tex]
projection of second stone,[tex]\theta_2=15^{\circ}[/tex] below the horizontal
The stone thrown upward will spend more time in the air because it travels more distance than the one thrown downwards.
The stone thrown upwards faces deceleration due to the gravity because it goes opposite to the gravity initially, then reaches a velocity zero for a moment and then falls freely from a greater height.
While the second stone posses an initial velocity downward in the direction of the gravity and which further increases its velocity and it travels a short distance.