Respuesta :
Answer with Explanation:
We are given that
Area of loop=[tex](20\times 20) cm^2=400\times 10^{-4} m^2[/tex]
[tex]1 cm^2=10^{-4} m^2[/tex]
Resistance, R=[tex]0.1\Omega[/tex]
B=[tex]4t-2t^2[/tex]
We know that magnetic flux
[tex]\phi=BA[/tex]
Emf ,[tex]E=\mid \frac{d\phi}{dt}\mid =\mid\frac{d(BA}{dt}\mid =\mid A\frac{dB}{dt}=400\times 10^{-4}\times \frac{4t-2t^2}{dt}\mid =\mid400\times 10^{-4}\times(4-4t)\mid[/tex]
Current, [tex]I=\frac{E}{R}[/tex]
Current, [tex]I=\frac{\mid 400\times 10^{-4}(4-4t)\mid }{0.1}=1.6\mid (1-t)\mid[/tex]
Substitute t=0 s
Then, I=[tex]1.6\mid (1-0)\mid[/tex]=1.6 A
Substitute t=1 s
Then, I=[tex]1.6\mid (1-1)\mid[/tex]=0
Substitute
t=2 s
Current, I=[tex]1.6\mid(1-2)\mid[/tex]=1.6 A
Answer:
Explanation:
Area, A = 20 x 20 cm² = 0.04 m²
Resistance, R = 0.10 ohm
Magnetic field, B = 4t - 2t²
the induced emf is given by
[tex]e=\frac{d\phi }{dt}[/tex]
where, Ф i the flux linked with the coil.
[tex]e=A\times \frac{dB }{dt}[/tex]
[tex]e=0.04(4 - 4t)[/tex]
Induced current
i = e/ R
[tex]i=\frac{0.04(4 - 4t)}{0.1}[/tex]
i = 0.4(4 - 4t)
For t = 0 s
i = 0.4 x 4 = 1.6 A
For t = 1 s
i = 0.4 ( 4 - 4) = 0 A
For t = 2 s
i = 0.4 ( 4 - 8) = 1.6 A in opposite direction