A (20*20) cm² loop has a resistance of 0.10 Ω. A magnetic field perpendicular to the loop is B = 4t - 2t², where B is in tesla and t is in seconds.
What is the current in the loop at t = 0.0 s, t = 1.0 s, and t = 2.0 s?

Respuesta :

Answer with Explanation:

We are given that

Area of loop=[tex](20\times 20) cm^2=400\times 10^{-4} m^2[/tex]

[tex]1 cm^2=10^{-4} m^2[/tex]

Resistance, R=[tex]0.1\Omega[/tex]

B=[tex]4t-2t^2[/tex]

We know that magnetic flux

[tex]\phi=BA[/tex]

Emf ,[tex]E=\mid \frac{d\phi}{dt}\mid =\mid\frac{d(BA}{dt}\mid =\mid A\frac{dB}{dt}=400\times 10^{-4}\times \frac{4t-2t^2}{dt}\mid =\mid400\times 10^{-4}\times(4-4t)\mid[/tex]

Current, [tex]I=\frac{E}{R}[/tex]

Current, [tex]I=\frac{\mid 400\times 10^{-4}(4-4t)\mid }{0.1}=1.6\mid (1-t)\mid[/tex]

Substitute t=0 s

Then, I=[tex]1.6\mid (1-0)\mid[/tex]=1.6 A

Substitute t=1 s

Then, I=[tex]1.6\mid (1-1)\mid[/tex]=0

Substitute

t=2 s

Current, I=[tex]1.6\mid(1-2)\mid[/tex]=1.6 A

Answer:

Explanation:

Area, A  = 20 x 20 cm² = 0.04 m²

Resistance, R = 0.10 ohm

Magnetic field, B = 4t - 2t²

the induced emf is given by

[tex]e=\frac{d\phi }{dt}[/tex]

where, Ф i the flux linked with the coil.

[tex]e=A\times \frac{dB }{dt}[/tex]

[tex]e=0.04(4 - 4t)[/tex]

Induced current

i = e/ R

[tex]i=\frac{0.04(4 - 4t)}{0.1}[/tex]

i = 0.4(4 - 4t)

For t = 0 s

i = 0.4 x 4 = 1.6 A

For t = 1 s

i = 0.4 ( 4 - 4) = 0 A

For t = 2 s

i = 0.4 ( 4 - 8) = 1.6 A in opposite direction

ACCESS MORE