Respuesta :
Answer:
-117 m/s
Explanation:
We are given that
Mass, M=135 kg
[tex]m_1=105 kg[/tex]
Let m be the mass of another piece
Mass of another piece=135-105=30 kg
V=20 m/s
[tex]v_1=62 m/s[/tex]
We have to find the velocity of the other piece.
According to law of conservation of momentum
[tex]MV=m_1v_1+m_2v_2[/tex]
Substitute the values
[tex]150\times 20=105\times 62+30v_2[/tex]
[tex]3000=6510+30v_2[/tex]
[tex]3000-6510=30v_2[/tex]
[tex]3510=30v_2[/tex]
[tex]v_2=\frac{-3510}{30}=-117m/s[/tex]
Hence, the velocity of other piece after the explosion=-117 m/s
Answer:
Explanation:
M = 135 kg
U = 20 m/s East
m1 = 105 kg
m2 = M - m1 = 135 - 105 = 30 kg
v1 = 62 m/s East
let the velocity of another part is v2.
Use conservation of momentum
M x U = m1 x v1 + m2 x v2
135 x 20 = 105 x 62 + 30 x v2
2700 = 6510 + 30 v2
v2 = - 127 m/s
Thus, the velocity of another part is 127 m/s due west.