Respuesta :
Answer:
The probability that a customer will take less than half a minute to complete a transaction is 0.2835.
The probability that a customer will take more than 3 minutes to complete a transaction is 0.1353.
Step-by-step explanation:
Let X = service time of customers at an ATM to complete a transaction.
The average service time is, β = 1.5 minutes.
The random variable X follows an Exponential distribution with parameter λ = 1/β.
The probability density function of X is:
[tex]f(X)=\lambda e^{-\lambda x};\ x>0[/tex]
(1)
Compute the probability that a customer will take less than half a minute to complete a transaction as follows:
[tex]P(X<0.5)=\int\limits^{0.5}_{0} {\frac{1}{1.5} e^{-\frac{x}{1.5}}} \, dx \\=\frac{1}{1.5}\int\limits^{0.5}_{0} { e^{-\frac{x}{1.5}}} \, dx\\=\frac{1}{1.5}|\frac{e^{-\frac{x}{1.5}}}{-\frac{x}{1.5}}|^{0.5}_{0}\\=-e^{-\frac{0.5}{1.5}}+e^{-\frac{0}{1.5}}\\=1-0.7165\\=0.2835[/tex]
Thus, the probability that a customer will take less than half a minute to complete a transaction is 0.2835.
(2)
Compute the probability that a customer will take more than 3 minutes to complete a transaction as follows:
[tex]P(X>3)=\int\limits^{\infty}_{3} {\frac{1}{1.5} e^{-\frac{x}{1.5}}} \, dx \\=\frac{1}{1.5}\int\limits^{\infty}_{3} { e^{-\frac{x}{1.5}}} \, dx\\=\frac{1}{1.5}|\frac{e^{-\frac{x}{1.5}}}{-\frac{x}{1.5}}|^{\infty}_{3}\\=-e^{-\frac{\infty}{1.5}}+e^{-\frac{3}{1.5}}\\=0+0.1353\\=0.1353[/tex]
Thus, the probability that a customer will take more than 3 minutes to complete a transaction is 0.1353.