Respuesta :

Answer: [tex]tan(x)^{2}[/tex]

Step-by-step explanation:

We will use the trigonometric identities to solve this problem:

[tex]\frac{sec(x)^{2}}{cot(x)^{2}+1}[/tex] (1)

Let's begin by the following trigonometric identity:

[tex]sec(x)^{2}=tan(x)^{2}+1[/tex] (2)

An substitute it in (1):

[tex]\frac{tan(x)^{2}+1}{cot(x)^{2}+1}[/tex] (3)

Then, taking into account [tex]tan(x)^{2}=\frac{sin(x)^{2}}{cos(x)^{2}}[/tex] and [tex]cot(x)^{2}=\frac{cos(x)^{2}}{sin(x)^{2}}[/tex], we rewrite (3):

[tex]\frac{\frac{sin(x)^{2}}{cos(x)^{2}}+1}{\frac{cos(x)^{2}}{sin(x)^{2}}+1}[/tex] (4)

[tex]\frac{\frac{sin(x)^{2}+cos(x)^{2}}{cos(x)^{2}}}{\frac{cos(x)^{2}+sin(x)^{2}}{sin(x)^{2}}}[/tex] (5)

Then, applying the trigonometric identity [tex]sin(x)^{2}+cos(x)^{2}=1[/tex]

[tex]\frac{1}{cos(x)^{2}}}{\frac{1}{sin(x)^{2}}}[/tex] (6)

Finally

[tex]\frac{sin(x)^{2}}{cos(x)^{2}}}=tan(x)^{2}[/tex] (7)

ACCESS MORE