Respuesta :

Answer:

[tex]\displaystyle \bar g=\frac{1}{2(e-1)}[/tex]

Step-by-step explanation:

Average Value of a Function

Given a function g(x), the average value of g in a given interval (xo,x1) is given by

[tex]\displaystyle \bar g=\frac{1}{x_1-x_0}\int_{x_0}^{x_1} g(x)dx[/tex]

Plugging in the given data

[tex]\displaystyle \bar g=\frac{1}{e-1}\int_{1}^{e} \frac{lnx}{x}dx[/tex]

Let's compute the indefinite integral

[tex]\displaystyle I=\int \frac{lnx}{x}dx[/tex]

We'll use the substitution u=lnx, du=dx/x. Then

[tex]\displaystyle I=\int u.du[/tex]

[tex]\displaystyle I=\frac{u^2}{2}[/tex]

Taking back the substitution

[tex]\displaystyle I=\frac{ln^2x}{2}[/tex]

The average value is

[tex]\displaystyle \bar g=\frac{1}{e-1}\frac{ln^2x}{2} \ | _1^e[/tex]

[tex]\displaystyle \bar g=\frac{1}{e-1}\left(\frac{ln^2e}{2}-\frac{ln^21}{2} \right )[/tex]

[tex]\displaystyle \bar g=\frac{1}{e-1}\left(\frac{1}{2}-0 \right )[/tex]

[tex]\displaystyle \bar g=\frac{1}{2(e-1)}[/tex]

ACCESS MORE