Answer:
The answers to the question are;
The marginal profit with the respective value of x are given as;
(a) x=400, P(x)= 10203.42
(b) x=1000, P(x)= 67255.94
(c) x=6000, P(x)= 25181266.12
(d) x=12,000, P(x)= 10041168.853.
Step-by-step explanation:
To solve the question, we note that the function for profit is given by
P(x) = 0.07·x² - 4·x + 5·[tex]x^{0.8}[/tex]
to solve for P(x) when
(a) x=400 we have
P(400) = 0.07·400² - 4·400 + 5·[tex]400^{0.8}[/tex] = 10203.42
The marginal profit when x=400 is 10203.42
(b) x=1000 we have
P(1000) = 0.07·1000² - 4·1000 + 5·[tex]1000^{0.8}[/tex] = 67255.94
The marginal profit when x=1000 is 67255.94
(c) x=6000 we have
P(1000) = 0.07·6000² - 4·6000 + 5·[tex]6000^{0.8}[/tex] = 25181266.12
The marginal profit when x=6000 is 25181266.12
(d) x=12,000. we have
P(12,000) = 0.07·12,000² - 4·12,000 + 5·[tex]12000^{0.8}[/tex] = 10041168.853
The marginal profit when x = 12,000 is 10041168.853.