Respuesta :

Option D:

[tex]$y=\frac{5x-2}{x}[/tex]

Solution:

Given function:

[tex]$y=\frac{-2}{x-5}[/tex]

To find the inverse of the function.

Inverse of a function:

If a function f(x) is mapping x to y, then the inverse function of f(x) maps y back to x.

[tex]$y=\frac{-2}{x-5}[/tex]

Interchange the variables x and y.

[tex]$x=\frac{-2}{y-5}[/tex]

Now, solve for y.

Multiply both sides by (y - 5).

[tex]$x(y-5)=-\frac{2}{y-5}(y-5)[/tex]

Cancel the common factors, we get

[tex]x(y-5)=-2[/tex]

Divide by x on both sides.

[tex]$y-5=-\frac{2}{x}[/tex]

Add 5 on both sides.

[tex]$y=-\frac{2}{x}+5[/tex]

[tex]$y=-\frac{2}{x}+\frac{5}{1}[/tex]

To make the denominator same, multiply the 2nd term by [tex]\frac{x}{x}[/tex].

[tex]$y=-\frac{2}{x}+\frac{5x}{x}[/tex]

[tex]$y=\frac{-2+5x}{x}[/tex]

[tex]$y=\frac{5x-2}{x}[/tex]

Option D is the correct answer.

ACCESS MORE