The work done by [tex]\vec F[/tex] along [tex]\vec r(t)[/tex] is given by
[tex]\displaystyle\int_C\vec F\cdot\mathrm d\vec r[/tex]
where [tex]C[/tex] denotes the given path.
Since we already have the parameterization, all we need to do is compute the differential/length element:
[tex]\mathrm d\vec r=\dfrac{\mathrm d\vec r(t)}{\mathrm dt}\,\mathrm dt=(1-\cos t)\,\vec\imath+\sin t\,\vec\jmath[/tex]
Then the work is
[tex]\displaystyle\int_C\vec F\cdot\mathrm d\vec r[/tex]
[tex]\displaystyle=\int_0^{2\pi}((t-\sin t)\,\vec\imath+(7-\cos t)\,\vec\jmath)\cdot((1-\cos t)\,\vec\imath+\sin t\,\vec\jmath)\,\mathrm dt[/tex]
[tex]=\displaystyle\int_0^{2\pi}(t-t\cos t+6\sin t)\,\mathrm dt=\boxed{2\pi^2}[/tex]