A lawn roller in the form of a thin-walled, hollow cylinder with mass M is pulled horizontally with a constant horizontal force F applied by a handle attached to the axle. If it rolls without slipping, find the acceleration and the friction force.

Respuesta :

Answer:

[tex]a_{cm}=\frac{F}{2M}\\\\F_{fr}=\frac{F}{2}[/tex]

Explanation:

Given the mass as M, the rotational inertia of the mower is;

[tex]I_{cm}=MR^2[/tex]

-The roller doesn't slip while rolling;

[tex]v_{cm}=wR, a_{cm}=\alpha R[/tex]

[tex]\sum F_x=Ma_x, -F+F_{fr}=-Ma_{cm}\\\\a_{cm}=\frac{F-Fr}{M} \ \ \ \ \ \ \ \ eqtn1\\\\\sum \tau_{cm}=I_{cm}\alpha, F_{fr}(R)}=(MR^2)(\frac{a_{cm}}{R}), ->F_{fr}=Ma_c_m\ \ \ \ \ \ \ eqtn2\\\\a_{cm}=\frac{F-Ma_{cm}}{M}, ->F=2Ma_{cm}\\\\a_{cm}=\frac{F}{2M}\\\\\\\therefore F_{fr}=M(\frac{F}{2M})\\\\F_{fr}=\frac{F}{2}[/tex]

The acceleration will be "a = [tex]\frac{F}{2m}[/tex]" and the friction force will be "[tex]F_{f} = \frac{F}{2}[/tex]".

Friction force

According to the question,

As whenever the linear velocity rises, additional friction force ([tex]F_f[/tex]) opposes the externally force applied (F), causing the angular velocity just to expand.

Newton's law would be required including both forces as well as the torques.

Now,

→ F - [tex]F_f[/tex] = [tex]M_a[/tex]

    [tex]F_f[/tex] R = Iα

          a = Rα

When all mass on the surface,

I = [tex]M_r[/tex]²

F - [tex]\frac{I \alpha}{R}[/tex] = [tex]M_a[/tex]

F - [tex]M_a[/tex] = [tex]M_a[/tex]

hence,

The acceleration, a = [tex]\frac{F}{2M}[/tex]

The friction force, [tex]F_f[/tex] = [tex]M_a[/tex]

                                   = [tex]\frac{F}{2}[/tex]

Thus the response above is correct.

Find out more information about friction force here:

https://brainly.com/question/23161460

ACCESS MORE