Answer:
Explanation:
velocity of ship with respect to water = 6.5 m/s due north
[tex]\overrightarrow{v}_{s,w}=6.5 \widehat{j}[/tex]
velocity of water with respect to earth = 1.5 m/s at 40° north of east
[tex]\overrightarrow{v}_{w,e}=1.5\left ( Cos40\widehat{i} +Sin40\widehat{j}\right)[/tex]
velocity of ship with respect to water = velocity of ship with respect to earth - velocity of water with respect to earth
[tex]\overrightarrow{v}_{s,w} = \overrightarrow{v}_{s,e} - \overrightarrow{v}_{w,e}[/tex]
[tex]\overrightarrow{v}_{s,e} = 6.5 \widehat{j}- 1.5\left (Cos40\widehat{i} +Sin40\widehat{j} \right )[/tex]
[tex]\overrightarrow{v}_{s,e} = - 1.15 \widehat{i}+5.54\widehat{j}[/tex]
The magnitude of the velocity of ship relative to earth is [tex]\sqrt{1.15^{2}+5.54^{2}}[/tex] = 5.66 m/s