Respuesta :
The acceleration of the block B is 0.69 m/s² downwards in the direction of block B.
The normal force on each block is calculated as follows;
[tex]F_n_ A = mgcos \theta\\\\F_n_ B = m_ B g[/tex]
The frictional force on block A is calculated as;
[tex]F_f = \mu_k F_n\\\\F_f = \mu_ kg mgcos \theta[/tex]
The horizontal force on block A is given as;
[tex]F_x = mgsin\theta[/tex]
The tension on the string due to each block is given as;
[tex]T_ A = m_ A a\\\\T_ B = m_ B a[/tex]
The net force on the block B is calculated as;
[tex]m_Bg - (T_A + m_Agsin\theta + \mu mgcos\theta) = T_B\\\\m_Bg - m_Agsin\theta - \mu mgcos\theta= T_B + T_ A\\\\m_Bg - m_Agsin\theta - \mu mgcos\theta = a(m_ B+ m_ A)\\\\a = \frac{m_Bg - m_Agsin\theta - \mu mgcos\theta}{m_B + m_ A} \\\\a = \frac{(8)(9.8)\ -\ (10)(9.8)(sin30)\ -\ (0.2)(10)(9.8)(cos30)}{8 + 10} \\\\a = 0.69 \ m/s^2 \ (in -direction \ of \ block \ B)[/tex]
Thus, the acceleration of the block B is 0.69 m/s² downwards in the direction of block B.
Learn more here:https://brainly.com/question/15412658
