Respuesta :
Answer:
3 years
Step-by-step explanation:
Note that:
P(0) = 803
So Tripling time ==> P(t) = 3*P(0) = 3*803 = 2409
Then we have an equation:
2409 = 803*[tex]3^{\frac{t}{3} }[/tex]
<=> 3 = [tex]3^{\frac{t}{3} }[/tex]
<=> 1 = [tex]\frac{t}{3}[/tex]
<=> t = [tex]3[/tex]
So the tripling time for this population of alligators is 3 years
Answer:
3 years
Step-by-step explanation:
[TeX] P(t)=803 X 3^{t/3}[/TeX]
First, we determine the initial population.
At t=0
[TeX] P(0)=803 X 3^{0/3}[/TeX]
P(0)=803
For the initial population to triple.
P(t)=3P(0) = 3 X 803 = 2409
[TeX] P(t)=803 X 3^{t/3}[/TeX]
[TeX] 2409=803 X 3^{t/3}[/TeX]
[TeX] \frac{2409}{803}= 3^{t/3}[/TeX]
[TeX] 3= 3^{t/3}[/TeX]
Since the bases are equal
[TeX] \frac{t}{3}=1[/TeX]
t=3
In 3 years, the population of the alligators will be triple its population at introduction.