Explanation:
Volume of the rigid tank (V)= 200[tex]m^{3}[/tex]
Temperature (T) = [tex]50^{o} c[/tex]
Note : refer the figure attached below
Now,
Since 10% of mass is liquid and rest is vapour.
Therefore, Dryness fraction (x) = percentage of vapour in the (liquid + vapour)
mixture
x = 100 - 10 = 90%
x = 0.9
At T = [tex]50^{o} c[/tex]
[tex]P_{\text {sat }}=12.352 \mathrm{kpa}, \quad v_{f}=0.001012 \mathrm{m}^{3} / \mathrm{kg}, \quad v_{g}=12.02 \mathrm{cm}^{3} / \mathrm{kg}[/tex]
[tex]v_{A}=v_{f}+x\left(v_{g}-v_{f}\right)[/tex]
[tex]=0.001012+0.9(12.026-0.001012)=10.8235001 \mathrm m^{2}/ {kg}[/tex]
[tex]\text { Total roass }(\gamma n)=\frac{V}{v_{A}}=\frac{200 \mathrm{m}^{3}}{10.8235 \mathrm{m} / \mathrm{kg}}=18.4783 \mathrm{kg}[/tex]
[tex]m=18.4783 \mathrm{kg}[/tex]
Now, heat is added so point A will reach to saturated vapour line at B
[tex]P_{B}=P_{\text {sat }}=12 \cdot 352 \mathrm{KPa}[/tex]