A diffraction grating with 600 lines/mmlines/mm is illuminated with light of wavelength 510 nmnm. A very wide viewing screen is 4.6 mm behind the grating. Part A What is the distance between the two mm

Respuesta :

Answer:

A.2.95 m

B.7

Explanation:

We are given that

Diffraction grating=600 lines/mm

d=[tex]\frac{1 mm}{600}=\frac{1\times 10^{-3} m}{600}=1.67\times 10^{-6} m[/tex]

Wavelength of light,[tex]\lambda=510 nm=510\times 10^{-9} m[/tex]

l=4.6 m

A.We have to find the distance between the two m=1 bright fringes

[tex]sin\theta=\frac{m\lambda}{d}[/tex]

For first bright fringe, =1

[tex]sin\theta=\frac{1\times 510\times 10^{-9}}{1.67\times 10^{-6}}=0.305[/tex]

[tex]\theta=sin^{-1}(0.305)=17.76^{\circ}[/tex]

The distance between two m=1 fringes

[tex]x=2ltan\theta=2\times 4.6 tan(17.76^{\circ})=2.95 m[/tex]

Hence, the distance between two m=1 fringes=2.95 m

B.For maximum number of fringes,

[tex]sin\theta=1[/tex]

[tex]sin\theta=\frac{m\lambda}{d}[/tex]

Substitute the values

[tex]1=\frac{m\times 510\times 10^{-9}}{1.67\times 10^{-6}}[/tex]

[tex]m=\frac{1.67\times 10^{-6}}{510\times 10^{-9}}=3.3\approx 3[/tex]

Maximum number of bright fringes on the scree=[tex]2m+1=2(3)+1=7[/tex]

ACCESS MORE