Answer:
A.2.95 m
B.7
Explanation:
We are given that
Diffraction grating=600 lines/mm
d=[tex]\frac{1 mm}{600}=\frac{1\times 10^{-3} m}{600}=1.67\times 10^{-6} m[/tex]
Wavelength of light,[tex]\lambda=510 nm=510\times 10^{-9} m[/tex]
l=4.6 m
A.We have to find the distance between the two m=1 bright fringes
[tex]sin\theta=\frac{m\lambda}{d}[/tex]
For first bright fringe, =1
[tex]sin\theta=\frac{1\times 510\times 10^{-9}}{1.67\times 10^{-6}}=0.305[/tex]
[tex]\theta=sin^{-1}(0.305)=17.76^{\circ}[/tex]
The distance between two m=1 fringes
[tex]x=2ltan\theta=2\times 4.6 tan(17.76^{\circ})=2.95 m[/tex]
Hence, the distance between two m=1 fringes=2.95 m
B.For maximum number of fringes,
[tex]sin\theta=1[/tex]
[tex]sin\theta=\frac{m\lambda}{d}[/tex]
Substitute the values
[tex]1=\frac{m\times 510\times 10^{-9}}{1.67\times 10^{-6}}[/tex]
[tex]m=\frac{1.67\times 10^{-6}}{510\times 10^{-9}}=3.3\approx 3[/tex]
Maximum number of bright fringes on the scree=[tex]2m+1=2(3)+1=7[/tex]