A capacitor consists of two concentric cylinders. The inner cylinder has a radius of 0.001 m and the outer cylinder a radius of 0.0011 m. The length of the capacitor is 1 m. If centered on the z-axis, the region 0 < ∅ < π has a dielectric constant of 2 and the region π < ∅ < 2π a dielectric constant of 4. Find the capacitance. Ignore fringing fields.

Respuesta :

Answer:

The capacitance is 1.75 nF

Explanation:

From the question we are given that

    The inner radius is [tex]r_{in} = 0.001[/tex]

     The outer radius is [tex]r_{out} = 0.0011 \ m[/tex]

    Length of the capacitor is [tex]L = 1m[/tex]

    The dielectric constant is [tex]Di = 2 \ for \ 0 < \phi < \pi[/tex]

   The dielectric constant is  [tex]Di_2 = 4 \ for \ \pi < \phi < 2\pi[/tex]

Generally the capacitance of a capacitor can be mathematically represented as

                [tex]C = \frac{\pi \epsilon_0 Di_1 L}{ln\frac{r_{out}}{r_{in}} } + \frac{\pi \epsilon_0 Di_2L}{ln\frac{r_{out}}{r_{in}} }[/tex]

                   [tex]= \frac{\pi \epsilon_0 L (Di_1 + Di_2)}{ln\frac{r_{out}}{r_{in}} }[/tex]

                  [tex]= \frac{(3.142)(8.85*10^{-12})(1)(2+4)}{ln\frac{0.0011}{0.001} }[/tex]

                  [tex]=1.75*10^{-9} F[/tex]

                  [tex]1.75nF[/tex]

                 

                   

ACCESS MORE