tip derivitive of trigonometric functions

Answer:
c) cos a
Step-by-step explanation:
The given limit is:
[tex]Lim_{x\to a} \frac{\sin x-\sin a}{x-a}[/tex]
By direction substitution , we get an indeterminate form of:
[tex] \frac{0}{0} [/tex]
We apply L'Hopitals rule to get:
[tex] Lim_{x\to a} \frac{\sin x-\sin a}{x-a} = Lim_{x\to a} \frac{(\sin x-\sin a)'}{(x-a)'}[/tex]
This implies that:
[tex]Lim_{x\to a} \frac{\sin x-\sin a}{x-a} = Lim_{x\to a} \frac{\cos x}{1}[/tex]
This finally gives:
[tex]Lim_{x\to a} \frac{\sin x-\sin a}{x-a} = \cos(a) [/tex]