Respuesta :

Answer:

c) cos a

Step-by-step explanation:

The given limit is:

[tex]Lim_{x\to a} \frac{\sin x-\sin a}{x-a}[/tex]

By direction substitution , we get an indeterminate form of:

[tex] \frac{0}{0} [/tex]

We apply L'Hopitals rule to get:

[tex] Lim_{x\to a} \frac{\sin x-\sin a}{x-a} = Lim_{x\to a} \frac{(\sin x-\sin a)'}{(x-a)'}[/tex]

This implies that:

[tex]Lim_{x\to a} \frac{\sin x-\sin a}{x-a} = Lim_{x\to a} \frac{\cos x}{1}[/tex]

This finally gives:

[tex]Lim_{x\to a} \frac{\sin x-\sin a}{x-a} = \cos(a) [/tex]

ACCESS MORE