Respuesta :
The simplified expression is [tex]15 x^{6}+20 x^{5}+10 x^{4}[/tex]
Explanation:
Given that the expression is [tex]-5 x^{4}\left(-3 x^{2}-4 x-2\right)[/tex]
We need to determine the simplify the expression.
Let us multiply each term within the parenthesis by the term [tex]-5 x^{4}[/tex]
Thus, we have,
[tex]\left(-5 x^{4}\right)\left(-3 x^{2}\right)+\left(-5 x^{4}\right)(-4 x)+\left(-5 x^{4}\right)(-2)[/tex]
Applying the rule, [tex](-a)(-b)=a b[/tex] in the above expression, we get,
[tex]\left(5 x^{4}\right)\left(3 x^{2}\right)+\left(5 x^{4}\right)(4 x)+\left(5 x^{4}\right)(2)[/tex]
Let us simplify by multiplying the terms.
Thus, we get,
[tex]15 x^{6}+20 x^{5}+10 x^{4}[/tex]
Hence, the simplified expression is [tex]15 x^{6}+20 x^{5}+10 x^{4}[/tex]
Answer:
15x^6 − 20x^5 + 10x^4
Step-by-step explanation:
You distribute the -5x^4 across −3x^2+4x−2 then you add the exponents, remember that there is an "x" with no exponent counts as 1 so when you add the four from "-5x^4" just add one.