Respuesta :

The simplified expression is [tex]15 x^{6}+20 x^{5}+10 x^{4}[/tex]

Explanation:

Given that the expression is [tex]-5 x^{4}\left(-3 x^{2}-4 x-2\right)[/tex]

We need to determine the simplify the expression.

Let us multiply each term within the parenthesis by the term [tex]-5 x^{4}[/tex]

Thus, we have,

[tex]\left(-5 x^{4}\right)\left(-3 x^{2}\right)+\left(-5 x^{4}\right)(-4 x)+\left(-5 x^{4}\right)(-2)[/tex]

Applying the rule, [tex](-a)(-b)=a b[/tex] in the above expression, we get,

[tex]\left(5 x^{4}\right)\left(3 x^{2}\right)+\left(5 x^{4}\right)(4 x)+\left(5 x^{4}\right)(2)[/tex]

Let us simplify by multiplying the terms.

Thus, we get,

[tex]15 x^{6}+20 x^{5}+10 x^{4}[/tex]

Hence, the simplified expression is [tex]15 x^{6}+20 x^{5}+10 x^{4}[/tex]

Answer:

15x^6 − 20x^5 + 10x^4

Step-by-step explanation:

You distribute the -5x^4 across −3x^2+4x−2 then you add the exponents, remember that there is an "x" with no exponent counts as 1 so when you add the four from "-5x^4" just add one.

ACCESS MORE