"If E = 7.50V and r=0.45Ω, find the minimum value of the voltmeter resistance RV for which the voltmeter reading is within 1.0% of the emf of the battery. Express your answer numerically (in ohms) to at least three significant digits.

Respuesta :

Answer:

The  minimum value is [tex]R_V =44.552\ \Omega[/tex]

Explanation:

From the question we are given that

                  The voltage is [tex]E = 7.5V[/tex]

                  The internal  resistance is [tex]r = 0.45[/tex]

The objective of this solution is to obtain the minimum value of the voltmeter resistance for which the voltmeter reading is within 1.0% of the emf of the battery

  What is means is that we need to obtain voltmeter resistance such that

                                V = (100% -1%) of E

Where E  is the  e.m.f of the battery and V is the voltmeter reading

                          i.e    V = 99% of E = 0.99 E = 7.425  

Generally

                E = V + ir

     where ir is the internal potential difference of the voltmeter and

                V is the voltmeter reading

 Making i the subject of the formula above

            [tex]i = \frac{(E-V)}{r}[/tex]

               [tex]=\frac{7.50-7.425}{0.45}[/tex]

              [tex]= 0.1667 A[/tex]

Now the current is constant through out the circuit so,

                  [tex]V = iR_V[/tex]

Where  [tex]R_V[/tex] is the value of voltmeter resistance

                Hence [tex]R_V = \frac{V}{i} = \frac{7.425}{0.1667}[/tex]

                                  [tex]=44.552\ \Omega[/tex]

                       

ACCESS MORE