A box of mass m = 19.5 kg m=19.5 kg is pulled up a ramp that is inclined at an angle θ = 23.0 ∘ θ=23.0∘ angle with respect to the horizontal. The coefficient of kinetic friction between the box and the ramp is μ k = 0.335 μk=0.335 , and the rope pulling the box is parallel to the ramp. If the box accelerates up the ramp at a rate of a = 2.69 m/s 2 a=2.69 m/s2 , calculate the tension F T FT in the rope. Use g = 9.81 m/s 2 g=9.81 m/s2 for the acceleration due to gravity.

Respuesta :

Answer:

186 N

Explanation:

Mass of box=m=19.5 kg

[tex]\theta=23^{\circ}[/tex]

Coefficient of friction between the box and ramp=[tex]\mu_k=0.335[/tex]

[tex]a=2.69 m/s^2[/tex]

Acceleration due to gravity,g=[tex]9.81 m/s^2[/tex]

[tex]T-mgsin\theta-\mu_kmgcos\theta=ma[/tex]

Substitute the values

[tex]T-19.5\times 9.81sin23-0.335\times 19.5\times 9.81cos23=19.5\times 2.69[/tex]

[tex]T=19.5\times 9.81sin23+0.335\times 19.5\times 9.81cos23+19.5\times 2.69[/tex]

[tex]T=186 N[/tex]

Answer:

The tension in the rope is 186.0 N.

Explanation:

Given that,

Mass of box = 19.5 kg

Angle = 23.0°

Coefficient of kinetic friction = 0.335

Acceleration = 2.69 m/s²

In y direction, the acceleration is zero.

So. The net force is zero.

We need to calculate the normal force

Using balance equation

[tex]N-mg\cos\theta=ma[/tex]

Where, n = normal force

a = acceleration

Put the value into the formula

[tex]N-19.5\times9.8\cos23=0[/tex]

[tex]N=175.90\ N[/tex]

We need to calculate the friction force

Using formula of friction force

[tex]F_{\mu k}=\mu N[/tex]

Put the value into the formula

[tex]F_{\mu k}=0.335\times175.90[/tex]

[tex]F_{\mu k}=58.92\ N[/tex]

We need to calculate the tension

Using balance equation

[tex]T-mg\sin\theta-F_{\mu k}=ma[/tex]

[tex]T=ma+mg\sin\theta+F_{\mu k}[/tex]

[tex]T=19.5\times2.69+19.5\times9.8\sin23+58.92[/tex]

[tex]T=186.0\ N[/tex]

Hence, The tension in the rope is 186.0 N.

ACCESS MORE