Respuesta :
Answer:
186 N
Explanation:
Mass of box=m=19.5 kg
[tex]\theta=23^{\circ}[/tex]
Coefficient of friction between the box and ramp=[tex]\mu_k=0.335[/tex]
[tex]a=2.69 m/s^2[/tex]
Acceleration due to gravity,g=[tex]9.81 m/s^2[/tex]
[tex]T-mgsin\theta-\mu_kmgcos\theta=ma[/tex]
Substitute the values
[tex]T-19.5\times 9.81sin23-0.335\times 19.5\times 9.81cos23=19.5\times 2.69[/tex]
[tex]T=19.5\times 9.81sin23+0.335\times 19.5\times 9.81cos23+19.5\times 2.69[/tex]
[tex]T=186 N[/tex]
Answer:
The tension in the rope is 186.0 N.
Explanation:
Given that,
Mass of box = 19.5 kg
Angle = 23.0°
Coefficient of kinetic friction = 0.335
Acceleration = 2.69 m/s²
In y direction, the acceleration is zero.
So. The net force is zero.
We need to calculate the normal force
Using balance equation
[tex]N-mg\cos\theta=ma[/tex]
Where, n = normal force
a = acceleration
Put the value into the formula
[tex]N-19.5\times9.8\cos23=0[/tex]
[tex]N=175.90\ N[/tex]
We need to calculate the friction force
Using formula of friction force
[tex]F_{\mu k}=\mu N[/tex]
Put the value into the formula
[tex]F_{\mu k}=0.335\times175.90[/tex]
[tex]F_{\mu k}=58.92\ N[/tex]
We need to calculate the tension
Using balance equation
[tex]T-mg\sin\theta-F_{\mu k}=ma[/tex]
[tex]T=ma+mg\sin\theta+F_{\mu k}[/tex]
[tex]T=19.5\times2.69+19.5\times9.8\sin23+58.92[/tex]
[tex]T=186.0\ N[/tex]
Hence, The tension in the rope is 186.0 N.