Respuesta :
Answer :
The fraction of kinetic energy lost in the collision is 13.5%.
Explanation :
Given that,
Mass of stationary puck = 0.30 kg
Mass of moving puck = 0.20 kg
Speed = 5.2 m/s
Speed = 3.1 m/s
Angle = 53°
(a). We need to calculate the velocity
Using Conservation of momentum
Along x ,
[tex]m_{1}u_{1}+m_{2}u_{2}=m_{1}v_{1}+m_{2}v_{2}[/tex]
[tex]m_{1}u_{1}+m_{2}u_{2}=m_{1}(v\cos\theta)+m_{2}v_{x}[/tex]
Put the value into the formula
[tex]0+0.20\times5.2=0.20\times(5.2\cos\theta)+0.30\times v_{x}[/tex]
[tex]1.04=0.625+0.30v_{x}[/tex]
[tex]v_{x}=\dfrac{1.04-0.625}{0.3}[/tex]
[tex]v_{x}=1.38\ m/s[/tex]
Along y,
[tex]m_{1}u_{1}+m_{2}u_{2}=m_{1}v_{1}+m_{2}v_{y}[/tex]
[tex]m_{1}u_{1}+m_{2}u_{2}=m_{1}(v\sin\theta)+m_{2}v_{y}[/tex]
Put the value into the formula
[tex]0+0=0.20\times5.2\sin53+0.30v_{y}[/tex]
[tex]v_{y}=\dfrac{-0.20\times5.2\sin53}{0.30}[/tex]
[tex]v_{y}=-2.7\ m/s[/tex]
We need to calculate the velocity of the 0.30 kg puck after the collision
Using formula of velocity
[tex]v=\sqrt{v_{x}^2+v_{y}^2}[/tex]
Put the value into the formula
[tex]v=\sqrt{(1.38)^2+(-2.7)^2}[/tex]
[tex]v=3.032\ m/s[/tex]
(b). We need to calculate the kinetic energy lost in the collision
Kinetic energy before collision
[tex]K.E_{i}=\dfrac{1}{2}\times0.20\times(5.2)^2=2.704\ J[/tex]
Kinetic energy after collision
[tex]K.E_{f}=(\dfrac{1}{2}\times0.20\times3.1^2+\dfrac{1}{2}\times0.30\times(3.032)^2)=2.339\ J[/tex]
The ratio of kinetic energy
[tex]\dfrac{KE_{f}}{KE_{i}}=\dfrac{2.339}{2.704}[/tex]
[tex]\dfrac{K.E_{f}}{K.E_{i}}=0.865[/tex]
Kinetic energy lost [tex]=\dfrac{K.E_{f}}{K.E_{i}}-1[/tex]
Put the value into the formula
[tex]\text{Kinetic energy lost} =0.865-1[/tex]
[tex]\text{Kinetic energy lost} =-0.135[/tex]
Hence, The fraction of kinetic energy lost in the collision is 13.5%.
A) The velocity of the 0.30-kg puck after the collision is; v = 3.19 m/s
B) The fraction of kinetic energy lost in the collision is; 0.4565
We are given
Mass of moving puck; m₁ = 0.20 kg
Mass of stationary puck; m₂ = 0.30 kg
Initial velocity of stationary puck; u₂ = 0 m/s
Initial velocity of moving puck; u₁ = 5.2 m/s
Final velocity of moving puck; v₁ = 3.1 m/s
Angle of moving puck final velocity; θ = 53°
A) From principle of conservation of momentum, we know that;
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
Since the stationary puck had a final velocity at an angle, then;
v₁x = v₁cos θ
v₁y = v₁sin θ
Thus;
In the x direction;
m₁u₁ + m₂u₂ = m₁v₁cos θ + m₂v₂x
(0.2 * 5.2) + 0 = 0.2(3.1 cos 53°) + (0.3 * v₂x)
1.04 = 0.3731 + 0.3v₂x
0.3v₂ = 1.4 - 0.3731
v₂x = 1.0269 m/s
In the y direction;
m₁u₁ + m₂u₂ = m₁v₁sin θ + m₂v₂x
(0.2 * 5.2) + 0 = 0.2(3.1 sin 53°) + (0.3 * v₂y)
1.04 = 0.4952 + 0.3v₂y
v₂y = (1.04 - 0.4952)/0.3
v₂y = 3.016 m/s
Resultant is;
v = √(v₂x² + v₂y²)
v = √(1.0269² + 3.016²)
v = 3.19 m/s
B) Kinetic energy before collision is;
KE_i = ¹/₂m₁u₁²
KE_i = ¹/₂ * 0.2 * 5.2²
KE_i = 2.704 J
Kinetic energy after collision;
KE_f = ¹/₂(m₁v₁² + m₂v₂²)
KE_f = ¹/₂(0.2*3.1² + 0.3*3.19²)
KE_f = 4.97483 J
Kinetic energy lost = 4.97483 - 2.704 = 2.27083 J
Fraction of kinetic energy lost = 2.27083/4.97483 = 0.4565
Read more at; https://brainly.com/question/16647428