Answer:
The third approximation is x_3=-0.6825.
The value of f(x) for x_3 is f(x_3)=-0.0332.
Step-by-step explanation:
The Newton's method allow to approximate the root of a function as:
[tex]x_n=x_{n+1}-\frac{f(x_n)}{f'(x_n)}[/tex]
For this function, it is:
[tex]x_1=-1\\\\f(x)=2x^3-3x^2+2\\\\f'(x)=6x^2-6x[/tex]
For x1=-1
[tex]f(x_1)=2x_1^3-3x_1^2+2=2*(-1)^3-3(-1)^2+2=-2-3+2=-3\\\\f'(x_1)=6(-1)^2-6(-1)=6+6=12\\\\\\x_2=x_1+\frac{f(x_1)}{f'(x_1)} =(-1)-\frac{-3}{12} =-1+0.25=-0.75[/tex]
Then, for x2=-0.75
[tex]f(x_2)=2x_2^3-3x_2^2+2=-0.53125\\\\f'(x_1)=6x_2^2-6x_2=7.875\\\\\\x_3=x_2+\frac{f(x_2)}{f'(x_2)} =(-0.75)-\frac{-0.53125}{7.875}=-0.75+ 0.0675=-0.6825[/tex]
Then, the third approximation is x_3=-0.6825.
The value of f(x) for x_3 is f(x_3)=-0.0332.