Answer:
[tex]3.2\times 10^{-7}\ m[/tex] or 0.32 μm.
Explanation:
Given:
The radiations are UV radiation.
The frequency of the radiations absorbed (f) = [tex]9.38\times 10^{14}\ Hz[/tex]
The wavelength of the radiations absorbed (λ) = ?
We know that, the speed of ultraviolet radiations is same as speed of light.
So, speed of UV radiation (v) = [tex]3\times 10^8\ m/s[/tex]
Now, we also know that, the speed of the electromagnetic radiation is related to its frequency and wavelength and is given as:
[tex]v=f\lambda[/tex]
Now, expressing the above equation in terms of wavelength 'λ', we have:
[tex]\lambda=\frac{v}{f}[/tex]
Now, plug in the given values and solve for 'λ'. This gives,
[tex]\lambda=\frac{3\times 10^8\ m/s}{9.38\times 10^{14}\ Hz}\\\\\lambda=3.2\times 10^{-7}\ m\\\\\lambda=3.2\times 10^{-7}\times 10^{6}\ \mu m\ [1\ m=10^6\ \mu m]\\\\\lambda=3.2\times 10^{-1}=0.32\ \mu m[/tex]
Therefore, the wavelength of the radiations absorbed by the ozone is nearly [tex]3.2\times 10^{-7}\ m[/tex] or 0.32 μm.