Respuesta :
Answer:
V = 2.8cm/s
Explanation:
Please see attachment below.
This problem involves the concept of doppler effect.


Answer:
The speed at which the blood is flowing in cm/s = 1.4 cm/s
Explanation:
emitted frequency ( f ) = 1.1 * 10^6 Hz
detected frequency ( F ) = 21 Hz
speed of sound in tissues ( c ) = 1475 m/s
speed ( V ) = ?
To calculate for speed of blood flowing we apply the detected frequency formula :
F = [tex]\frac{2fV}{c}[/tex]
21 = ( 2* 1100000* V ) / 1475
therefore V = (21 * 1475) / (2 * 1100000)
V = 30975 / 2200000
V = 0.0140 m/s = 1.4 cm/sec