Step-by-step explanation:
Let us assume the two needed vehicles are A and Q.
Let P(A) be the probability of the vehicle A available when needed.
And, P(Q) be the probability of the vehicle Q available when needed.
Now, P(A) = 90 % = 0.90
⇒ P (not A) = 1 - P(A)
= 1- 0.9 = 0.1
⇒ P (not A) = 0.1
Similarly, P(Q) = 90 % = 0.90
⇒ P (not Q) = 1 - P(Q)
= 1- 0.9 = 0.1
⇒ P (not Q) = 0.1
So, the probability that both the vehicles are NOT available when needed
= P(not A) x P(not Q)
= 0.1 x 0.1 = 0.01
Hence, the probability that neither vehicle is available at a given time is 0.01