Respuesta :
Answer:
There evidence to support the claim that type A battery mean life exceeds that of type B.
The 99% Confidence interval (CI) for the difference in the mean battery life is (0.91, 3.69).
Step-by-step explanation:
The hypothesis can be defined as follows:
H₀:The mean life of battery A is not more than that of battery B, i.e. [tex]\mu_{A}-\mu_{B}\leq 0[/tex].
Hₐ:The mean life of battery A is more than that of battery B, i.e. [tex]\mu_{A}-\mu_{B}>0[/tex].
The significance level of the test is, α = 0.05.
The test statistic is:
[tex]t=\frac{\bar x_{A}-\bar x_{B}}{SE}[/tex]
Compute the value of standard error as follows:
[tex]SE=\sqrt{\frac{s_{A}^{2}}{n_{A}}+\frac{s_{B}^{2}}{n_{B}}}=\sqrt{\frac{1.43^{2}}{12}+\frac{0.93^{2}}{12}}=\sqrt{0.242483}=0.4924[/tex]
Compute the test statistic as follows:
[tex]t=\frac{\bar x_{A}-\bar x_{B}}{SE}=\frac{36.51-34.21}{0.4924}=4.67[/tex]
Decision rule:
If the test statistic value is more than the critical value, [tex]t_{\alpha, df}[/tex], then the null hypothesis will be rejected. And vice-versa.
Compute the degrees of freedom (df) as follows:
[tex]df=\frac{SE^{4}}{\frac{(s_{A}^{2}/n_{A})^{2}}{n_{A}-1}+\frac{(s_{B}^{2}/n_{B})^{2}}{n_{B}-1}}=\frac{0.4924^{4}}{0.022}=18.88\approx19[/tex]
The critical value is, [tex]t_{\alpha, df}=t_{0.05, 19}=1.729[/tex]
The test statistic, t = 4.67 > [tex]t_{\alpha, df}[/tex] = 1.729.
Thus, the null hypothesis is rejected at 5% level of significance.
Conclusion:
Thus, there evidence to support the claim that type A battery mean life exceeds that of type B.
The critical value of t for a 99% confidence level and degrees of freedom 19 is:
[tex]t_{0.01/2, 22}=2.819[/tex]
The pooled standard deviation is:
[tex]S_{p}^{2}=\frac{(n_{A}-1)s_{A}^{2}+(n_{B}-1)s_{B}^{2}}{n_{A}+n_{B}-2}=\frac{(11\times1.43^{2})+(11\times0.93^{2})}{22}=1.455[/tex]
Compute the 99% confidence interval for the difference in the mean battery life as follows:
[tex]CI=\bar x_{A}-\bar x_{B}\pm t_{00.01/2, 22}\times \sqrt{S_{p}^{2}[\frac{1}{n_{A}}+\frac{1}{n_{B}}]}\\=(36.51-34.21)\pm 2.819\times\sqrt{1.455[\frac{1}{12}+\frac{1}{12}]}\\=2.3\pm1.39\\=(0.91, 3.69)[/tex]
Thus, the 99% Confidence interval (CI) for the difference in the mean battery life is (0.91, 3.69).

