The Lagrangian,
[tex]L(x,y,z,\lambda,\mu)=x+2y+9z-\lambda(x-y+z-1)-\mu(x^2+y^2-1)[/tex]
has critical points where its partial derivatives vanish:
[tex]L_x=1-\lambda-2\mu x=0[/tex]
[tex]L_y=2+\lambda-2\mu y=0[/tex]
[tex]L_z=9-\lambda=0[/tex]
[tex]L_\lambda=x-y+z-1=0[/tex]
[tex]L_\mu=x^2+y^2-1=0[/tex]
[tex]L_z=0[/tex] tells us [tex]\lambda=9[/tex], so that
[tex]L_x=0\implies-8-2\mu x=0\implies x=-\dfrac4\mu[/tex]
[tex]L_y=0\implies11-2\mu y=0\implies y=\dfrac{11}{2\mu}[/tex]
Then with [tex]L_\mu=0[/tex], we get
[tex]x^2+y^2=\dfrac{16}{\mu^2}+\dfrac{121}{4\mu^2}=1\implies\mu=\pm\dfrac{\sqrt{185}}2[/tex]
and [tex]L_\lambda=0[/tex] tells us
[tex]x-y+z=-\dfrac4\mu-\dfrac{11}{2\mu}+z=1\implies z=1+\dfrac{19}{2\mu}[/tex]
Then there are two critical points, [tex]\left(\pm\frac8{\sqrt{185}},\mp\frac{11}{\sqrt{185}},1\pm\frac{19}{\sqrt{185}}\right)[/tex]. The critical point with the negative [tex]x[/tex]-coordinates gives the maximum value, [tex]9+\sqrt{185}[/tex].