Explanation:
The given data is as follows.
[tex]V_{1}[/tex] = 50 ml, [tex]T_{1}[/tex] = 345 K
[tex]T_{2}[/tex] = 298 K, [tex]T_{f}[/tex] = 317 K,
[tex]V_{2}[/tex] = 50 ml
Now, we will calculate the heat energy as follows.
[tex]Q_{hot} = m \times C_{p} \times (T_{1} - T_{f})[/tex]
= [tex]50 g \times 4.184 \times (345 - 317)[/tex]
= 5857.6 J
[tex]Q_{cold} = m \times C_{p} \times (T_{f} - T_{2})[/tex]
= [tex]50 g \times 4.184 \times (317 - 298)[/tex]
= 3974.8 J
As, [tex]Q_{hot} = -Q_{cold}[/tex] so there will be loss of heat. And, some heat will go to the calorimeter.
Hence, [tex]Q_{hot} = Q_{cold} + Q_{cal}[/tex]
[tex]5857.6 = 3974.8 + Q_{cal}[/tex]
[tex]Q_{cal}[/tex] = 1882.8 J
We assume that the temperature of (calorimeter + water) is 298 K. Hence,
dT = [tex]T_{f} - T_{2}[/tex]
= (317 - 298) K
= 19 K
Hence, we will calculate the specific heat as follows.
C = [tex]\frac{Q}{dT}[/tex]
= [tex]\frac{1882.8 J}{19}[/tex]
= 99.1 J/K
Thus, we can conclude that the value of [tex]C_{cal}[/tex] for the calorimeter is 99.1 J/K.