Respuesta :
Answer:
P(X = 17) = 0.3002
Step-by-step explanation:
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
In this problem we have that:
[tex]n = 18, p = 0.9[/tex]
We want P(X = 17). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 17) = C_{18,17}.(0.9)^{17}.(0.1)^{1} = 0.3002[/tex]
P(X = 17) = 0.3002
Answer:
P(X=17) = 0.3002 .
Step-by-step explanation:
We are given that the random variable X has a binomial distribution with the given probability of obtaining a success.
The above situation can be represented through Binomial distribution;
[tex]P(X=r) = \binom{n}{r}p^{r} (1-p)^{n-r} ; x = 0,1,2,3,.....[/tex]
where, n = number of trials (samples) taken = 18
r = number of success = 17
p = probability of success which in our question is given as 0.9 .
So, X ~ [tex]Binom(n=18,p=0.9)[/tex]
We have to find the probability of P(X = 17);
P(X = 17) = [tex]\binom{18}{17}0.9^{17} (1-0.9)^{18-17}[/tex]
= [tex]18 \times 0.9^{17} \times 0.1^{1}[/tex] { [tex]\because \binom{n}{r} = \frac{n!}{r! \times (n-r)!}[/tex] }
= 0.3002
Therefore, P(X=17) = 0.3002 .